Versatile multiplexed super-resolution imaging of nanostructures by Quencher-Exchange-PAINT

  • Tobias Lutz
  • Alexander H. Clowsley
  • Ruisheng Lin
  • Stefano Pagliara
  • Lorenzo Di Michele
  • Christian Soeller
Open Access
Research Article

Abstract

The optical super-resolution technique DNA-PAINT (Point Accumulation Imaging in Nanoscale Topography) provides a flexible way to achieve imaging of nanoscale structures at ∼10-nanometer resolution. In DNA-PAINT, fluorescently labeled DNA “imager” strands bind transiently and with high specificity to complementary target “docking” strands anchored to the structure of interest. The localization of single binding events enables the assembly of a super-resolution image, and this approach effectively circumvents photobleaching. The solution exchange of imager strands is the basis of Exchange-PAINT, which enables multiplexed imaging that avoids chromatic aberrations. Fluid exchange during imaging typically requires specialized chambers or washes, which can disturb the sample. Additionally, diffusional washout of imager strands is slow in thick samples such as biological tissue slices. Here, we introduce Quencher-Exchange-PAINT—a new approach to Exchange-PAINT in regular open-top imaging chambers—which overcomes the comparatively slow imager strand switching via diffusional imager washout. Quencher-Exchange-PAINT uses “quencher” strands, i.e., oligonucleotides that prevent the imager from binding to the targets, to rapidly reduce unwanted single-stranded imager concentrations to negligible levels, decoupled from the absolute imager concentration. The quencher strands contain an effective dye quencher that reduces the fluorescence of quenched imager strands to negligible levels. We characterized Quencher-Exchange-PAINT when applied to synthetic, cellular, and thick tissue samples. Quencher-Exchange-PAINT opens the way for efficient multiplexed imaging of complex nanostructures, e.g., in thick tissues, without the need for washing steps.

Keywords

super-resolution microscopy fluorescence imaging DNA nanotechnology DNA-PAINT fluorescence quencher 

Notes

Acknowledgements

We thank Rikke Morrish for help with the fixation of COS-7 cells and Anna Meletiou, Cecilia Afonso Rodrigues, Carl Harrison for their help with antibody conjugations and labelling of tissue sections and fixed cells. The authors also acknowledge useful discussions with B.M. Mognetti. The work was supported by funding from the Human Frontier Science Program (No. 0027/2013) and the Engineering and Physical Sciences Research Council of the UK (No. EP/N008235/1).

Supplementary material

12274_2018_1971_MOESM1_ESM.pdf (704 kb)
Versatile multiplexed super-resolution imaging of nanostructures by Quencher-Exchange-PAINT

References

  1. [1]
    Huang, B.; Bates, M.; Zhuang, X. W. Super resolution fluorescence microscopy. Annu. Rev. Biochem. 2009, 78, 993–1016.CrossRefGoogle Scholar
  2. [2]
    Hell, S. W. Microscopy and its focal switch. Nat. Methods 2009, 6, 24–32.CrossRefGoogle Scholar
  3. [3]
    Bailey, B.; Farkas, D. L.; Taylor, D. L.; Lanni, F. Enhancement of axial resolution in fluorescence microscopy by standing- wave excitation. Nature 1993, 366, 44–48.CrossRefGoogle Scholar
  4. [4]
    Hell, S.; Stelzer, E. H. K. Properties of a 4Pi confocal fluorescence microscope. J. Opt. Soc. Am. A 1992, 9, 2159–2166.CrossRefGoogle Scholar
  5. [5]
    Hell, S. W.; Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy. Opt. lett. 1994, 19, 780–782.CrossRefGoogle Scholar
  6. [6]
    Klar, T. A.; Jakobs, S.; Dyba, M.; Egner, A.; Hell, S. W. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl. Acad. Sci. USA 2000, 97, 8206–8210.CrossRefGoogle Scholar
  7. [7]
    Betzig, E.; Patterson, G. H.; Sougrat, R.; Lindwasser, O. W.; Olenych, S.; Bonifacino, J. S.; Davidson, M. W.; Lippincott-Schwartz, J.; Hess, H. F. Imaging intracellular fluorescent proteins at nanometer resolution. Science 2006, 313, 1642–1645.CrossRefGoogle Scholar
  8. [8]
    Hess, S. T.; Girirajan, T. P. K.; Mason, M. D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 2006, 91, 4258–4272.CrossRefGoogle Scholar
  9. [9]
    Rust, M. J.; Bates, M.; Zhuang, X. W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 2006, 3, 793–796.CrossRefGoogle Scholar
  10. [10]
    Heilemann, M.; van de Linde, S.; Schüttpelz, M.; Kasper, R.; Seefeldt, B.; Mukherjee, A.; Tinnefeld, P.; Sauer, M. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew. Chem., Int. Ed. 2008, 47, 6172–6176.CrossRefGoogle Scholar
  11. [11]
    Legant, W. R.; Shao, L.; Grimm, J. B.; Brown, T. A.; Milkie, D. E.; Avants, B. B.; Lavis, L. D.; Betzig, E. High-density three-dimensional localization microscopy across large volumes. Nat. Methods 2016, 13, 359–365.CrossRefGoogle Scholar
  12. [12]
    Curdt, F.; Herr, S. J.; Lutz, T.; Schmidt, R.; Engelhardt, J.; Sahl, S. J.; Hell, S. W. isoSTED nanoscopy with intrinsic beam alignment. Opt. Express 2015, 23, 30891–30903.CrossRefGoogle Scholar
  13. [13]
    Sharonov, A.; Hochstrasser, R. M. Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc. Natl. Acad. Sci. USA 2006, 103, 18911–18916.CrossRefGoogle Scholar
  14. [14]
    Jungmann, R.; Avendaño, M. S.; Woehrstein, J. B.; Dai, M. J.; Shih, W. M.; Yin, P. Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT. Nat. Methods 2014, 11, 313–318.CrossRefGoogle Scholar
  15. [15]
    Jungmann, R.; Steinhauer, C.; Scheible, M.; Kuzyk, A.; Tinnefeld, P.; Simmel, F. C. Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami. Nano Lett. 2010, 10, 4756–4761.CrossRefGoogle Scholar
  16. [16]
    Schnitzbauer, J.; Strauss, M. T.; Schlichthaerle, T.; Schueder, F.; Jungmann, R. Super-resolution microscopy with DNA-PAINT. Nat. Protoc. 2017, 12, 1198–1228.CrossRefGoogle Scholar
  17. [17]
    Agasti, S. S.; Wang, Y.; Schueder, F.; Sukumar, A.; Jungmann, R.; Yin, P. DNA-barcoded labeling probes for highly multiplexed exchange-PAINT imaging. Chem. Sci. 2017, 8, 3080–3091.CrossRefGoogle Scholar
  18. [18]
    Thompson, R. E.; Larson, D. R.; Webb, W. W. Precise nanometer localization analysis for individual fluorescent probes. Biophys. J. 2002, 82, 2775–2783.CrossRefGoogle Scholar
  19. [19]
    Markham, N. R.; Zuker, M. DINAMelt web server for nucleic acid melting prediction. Nucleic Acids Res. 2005, 33, W577–W581.CrossRefGoogle Scholar
  20. [20]
    Markham, N. R.; Zuker, M. UNAFold: Software for nucleic acid folding and hybridization. In Bioinformatics, Volume II. Structure, Function and Applications. Keith, J. M., Ed.; Humana Press: Totowa, NJ, 2008; pp 3–31.Google Scholar
  21. [21]
    Molle, J.; Raab, M.; Holzmeister, S.; Schmitt-Monreal, D.; Grohmann, D.; He, Z. K.; Tinnefeld, P. Superresolution microscopy with transient binding. Curr. Opin. Biotechnol. 2016, 39, 8–16.CrossRefGoogle Scholar
  22. [22]
    Schueder, F.; Strauss, M. T.; Hoerl, D.; Schnitzbauer, J.; Schlichthaerle, T.; Strauss, S.; Yin, P.; Harz, H.; Leonhardt, H.; Jungmann, R. Universal super-resolution multiplexing by DNA exchange. Angew. Chem., Int. Ed. 2017, 56, 4052–4055.CrossRefGoogle Scholar
  23. [23]
    Wang, Y.; Woehrstein, J. B.; Donoghue, N.; Dai, M. J.; Avendaño, M. S.; Schackmann, R. C. J.; Zoeller, J. J.; Wang, S. S. H.; Tillberg, P. W.; Park, D. et al. Rapid sequential in situ multiplexing with DNA exchange imaging in neuronal cells and tissues. Nano Lett. 2017, 17, 6131–6139.CrossRefGoogle Scholar
  24. [24]
    Beater, S.; Holzmeister, P.; Lalkens, B.; Tinnefeld, P. Simple and aberration-free 4color-STED-multiplexing by transient binding. Opt. Express 2015, 23, 8630–8638.CrossRefGoogle Scholar
  25. [25]
    Hou, Y. F.; Crossman, D. J.; Rajagopal, V.; Baddeley, D.; Jayasinghe, I.; Soeller, C. Super-resolution fluorescence imaging to study cardiac biophysics: α-actinin distribution and Z-disk topologies in optically thick cardiac tissue slices. Prog. Biophys. Mol. Biol. 2014, 115, 328–339.CrossRefGoogle Scholar
  26. [26]
    Crossman, D. J.; Hou, Y. F.; Jayasinghe, I.; Baddeley, D.; Soeller, C. Combining confocal and single molecule localisation microscopy: A correlative approach to multi-scale tissue imaging. Methods 2015, 88, 98–108.CrossRefGoogle Scholar
  27. [27]
    Baddeley, D.; Cannell, M. B.; Soeller, C. Visualization of localization microscopy data. Microsc. Microanal. 2010, 16, 64–72.CrossRefGoogle Scholar

Copyright information

© The author(s) 2018

Open Access: This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Tobias Lutz
    • 1
  • Alexander H. Clowsley
    • 1
  • Ruisheng Lin
    • 1
  • Stefano Pagliara
    • 1
  • Lorenzo Di Michele
    • 2
  • Christian Soeller
    • 1
  1. 1.Living Systems Institute & Biomedical PhysicsUniversity of ExeterExeterUK
  2. 2.Cavendish LaboratoryUniversity of CambridgeCambridgeUK

Personalised recommendations