Skip to main content
Log in

Strong room-temperature emission from defect states in CVD-grown WSe2 nanosheets

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Monolayer transition metal dichalcogenides (TMDCs), as direct bandgap semiconductors, show promise for applications in ultra-thin flexible optoelectronic devices. However, the optical properties and device performance are greatly affected by defects, such as vacancies, present in these materials. Vacancies exist unavoidably in mechanically exfoliated or grown by chemical vapor deposition (CVD) monolayer TMDCs; therefore, their influence on the electric and optical properties of host materials has been widely studied. Here, we report a new defect state located at 1.54 eV, which is 70 meV lower than the neutral exciton energy in as-prepared MoS2 monolayers grown by CVD. This defect state is clearly observed in photoluminescence (PL) and Raman spectra at ambient conditions. PL mapping, Raman mapping, and atomic force microscopy analysis indicate a solid-vapor reaction growth mechanism of the defect state formation. During a certain growth stage, nuclei with the composition of WOxSey do not fully react with the Se vapor, leading to the defect formation. This type of defects permits radiative recombination of bound neutral excitons, which can make the PL intensity as strong as the intrinsic excitation. Our findings reveal a new way to tailor the optical properties of two-dimensional TMDCs without any additional processes performed after growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Mak, K. K.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically Thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

    Article  Google Scholar 

  2. Zeng, H. L.; Dai, J. F.; Yao, W.; Xiao, D.; Cui, X. D. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 2012, 7, 490–493.

    Article  Google Scholar 

  3. Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

    Article  Google Scholar 

  4. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

    Article  Google Scholar 

  5. Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.

    Article  Google Scholar 

  6. Zhao, W. J.; Ghorannevis, Z.; Chu, L.Q.; Toh, M.; Kloc, C.; Tan, P. H.; Eda, G. Evolution of electronic structure in atomically thin sheets of WS2 and MoS2. ACS Nano 2013, 7, 791–797.

    Article  Google Scholar 

  7. Berkelbach, T. C.; Hybertsen, M. S.; Reichman, D. R. Theory of neutral and charged excitons in monolayer transition metal dichalcogenides. Phys. Rev. B 2013, 88, 045318.

    Article  Google Scholar 

  8. He, K. L.; Kumar, N.; Zhao, L.; Wang, Z. F.; Mak, K. F.; Zhao, H.; Shan, J. Tightly bound excitons in monolayer MoS2. Phys. Rev. Lett. 2014, 133, 026803.

    Article  Google Scholar 

  9. Mak, K. F.; He, K. L.; Lee, C.; Lee, G. H.; Hone, J.; Heinzand, T. F.; Shan, J. Tightly bound trions in monolayer MoS2. Nat. Mater. 2013, 12, 207–211.

    Article  Google Scholar 

  10. Ross, J. S.; Wu, S. F.; Yu, H. Y.; Ghimire, N. J.; Jones, A. M.; Aivazian, G.; Yan, J. Q.; Mandrus, D. G.; Xiao, D.; Yao, W. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Common. 2013, 4, 1474.

    Article  Google Scholar 

  11. You, Y. M.; Zhang, X. X.; Berkelbach, Y. C.; Hybertsen, M. S.; Reichmanand, D. R.; Heinz, T. F. Observation of biexcitons in monolayer MoS2. Nat. Phys. 2015, 11, 477–481.

    Article  Google Scholar 

  12. Shang, J. Z.; Shen, X. N.; Cong, C. X.; Peimyoo, N.; Cao, B. C.; Eginligil, M.; Yu, T. Observation of excitonic fine structure in a 2D transition-metal dichalcogenide semiconductor. ACS Nano 2015, 9, 647–655.

    Article  Google Scholar 

  13. Kim, M. S.; Yun, S. J.; Lee, Y.; Seo, C.; Han, G. H.; Kim, K. K.; Lee, Y. H.; Kim, J. Biexciton emission from edges and grain boundaries of triangular WS2 monolayers. ACS Nano 2016, 10, 2399–2405.

    Article  Google Scholar 

  14. He, Z. Y.; Xu, W. S.; Zhou, Y. Q.; Wang, X. C.; Sheng, Y. W.; Rong, Y. M.; Guo, S. Q.; Zhang, J. Y.; Smith, J. M.; Warner, J. H. Biexciton formation in bilayer tungsten disulfide. ACS Nano 2016, 10, 2176–2183.

    Article  Google Scholar 

  15. Wang, X. Q.; Chen, Y. F.; Zheng, V. J.; Qi, F.; He, J. R.; Li, P. J.; Zhang, W. L. Few-layered MoS2 nanoflowers anchored on graphene nanosheets: A highly efficient and stable electrocatalyst for hydrogen evolution. Electrochimica Acta 2016, 222, 1293–1299.

    Article  Google Scholar 

  16. Wang, X. Q.; Chen, Y. F.; Qi, F.; Zheng, B. J.; He, J. R.; Li, Q.; Li, P. J.; Zhang, W. L.; Li, Y. R. Interwoven MoS2/CNTs hybrid network: A highly efficient and stable electrocatalyst for hydrogen evolution. Electrochem. Common. 2016, 72, 74–78.

    Article  Google Scholar 

  17. Yu, B.; Zheng, B. J.; Wang, X. Q.; Qi, F.; He, J. R.; Zhang, W. L.; Chen, Y. F. Enhanced photocatalytic properties of graphene modified few-layered MoS2 nanosheets. Appl. Surface Sci. 2017, 400, 420–425.

    Article  Google Scholar 

  18. Wang, X. Q.; Chen, Y. F.; Zheng, B. J.; Qi, F.; He, J. R.; Li, Q.; Li, P. J.; Zhang, Q. L. Graphene-like MoS2 nanosheets for efficient and stable hydrogen evolution. J. Alloys Compd. 2017, 691, 698–704.

    Article  Google Scholar 

  19. Zheng, B. J.; Chen, Y. F.; Wang, Z. G.; Qi, F.; Huang, Z. S.; Hao, X.; Li, P. J.; Zhang, W. L.; Li, Y. R. Vertically oriented few-layered HfS2 nanosheets: Growth mechanism and optical properties. 2D Mater. 2016, 3, 035024.

    Article  Google Scholar 

  20. Zheng, B. J.; Chen, Y. F.; Qi, F.; Wang, X. Q.; Zhang, W. L.; Li, Y. R.; Li, X. S. 3D-hierarchical MoSe2 nanoarchitecture as a highly efficient electrocatalyst for hydrogen evolution. 2D Mater 2017, 4, 025092.

    Article  Google Scholar 

  21. Van der Zande, A. M.; Huang, P. Y.; Chenet, D. A.; Berkelbach, T. C.; You, Y. M.; Lee, G. H.; Heinz, T. F.; Reichman, D. R.; Muller, D. A.; Hone, J. C. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 2013, 12, 554–561.

    Article  Google Scholar 

  22. Zhou, W.; Zou, X. L.; Najmaei, S.; Liu, Z.; Shi, Y. M.; Kong, J.; Lou, J.; Ajayan, O. M.; Yakobson, B. I.; Idrobo, J. C. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 2013, 13, 2615–2622.

    Article  Google Scholar 

  23. Najmaei, S.; Liu, Z.; Zhou, W.; Zou, Z. L.; Shi, G.; Lei, S. D.; Yakobson, B. I.; Idrobo, J. C.; Ajayan, P. M.; Lou, J. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 2013, 12, 754–759.

    Article  Google Scholar 

  24. Tongay, S.; Zhou, J.; Ataca, C.; Liu, J.; Kang, J. S.; Matthews, T. S.; You, L.; Li, J. B.; Grossman, J. C.; Wu, J. Q. Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. Nano Lett. 2013, 13, 2831–2836.

    Article  Google Scholar 

  25. Peimyoo, N.; Yang, W. H.; Shang, J. Z.; Shen, X. N.; Wang, Y. L.; Yu, T. Chemically driven tunable light emission of charged and neutral excitons in monolayer WS2. ACS Nano 2014, 8, 11320–11329.

    Article  Google Scholar 

  26. Lin, Y. X.; Ling, X.; Yu, L. L.; Huang, S. X.; Hsu, A. L.; Lee, Y. H.; Kong, J.; Dresselhaus, M. S.; Palacios, T. Dielectric screening of excitons and trions in single-layer MoS2. Nano Lett. 2014, 14, 5569–5576.

    Article  Google Scholar 

  27. Shu, H. B.; Li, Y. H.; Niu, X. H.; Wang, J. L. Greatly enhanced optical absorption of a defective MoS2 monolayer through oxygen passivation. ACSAppl. Mater. Interfaces 2016, 8, 13150–13156.

    Article  Google Scholar 

  28. Mouri, S.; Miyauchi, Y.; Matsuda, K. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 2013, 13, 5944–5948.

    Article  Google Scholar 

  29. Liu, Z.; Amani, M.; Najmaei, S.; Xu, Q.; Zou, X. L.; Zhou, W.; Yu, T.; Qiu, C. Y.; Birdwell, A. G.; Crowne, F. J. et al. Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition. Nat. Common. 2014, 5, 5246.

    Article  Google Scholar 

  30. Huang, J. K.; Pu, J.; Hsu, C. L.; Chiu, M. H.; Juang, Z. Y.; Chang, Y. H.; Chang, W. H.; Iwasa, Y.; Takenobu, T.; Li, L. J. Large-area synthesis of highly crystalline MoS2 monolayers and device applications. ACS Nano 2014, 8, 923–930.

    Article  Google Scholar 

  31. Liu, B. L.; Fathi, M.; Chen, L.; Abbas, A.; Ma, Y. Q.; Zhou, C. W. Chemical vapor deposition growth of monolayer MoS2 with tunable device characteristics and growth mechanism study. ACS Nano 2015, 9, 6119–6127.

    Article  Google Scholar 

  32. Clark, G.; Wu, S. F.; Rivera, P.; Finney, J.; Nguyen, P.; Cobden, D. H.; Xu, X. D. Vapor-transport growth of high optical quality MoS2 monolayers. APPL Mater. 2014, 2, 101101.

    Article  Google Scholar 

  33. Zhou, H. L.; Wang, C.; Shaw, J. C.; Cheng, R.; Chen, Y.; Huang, X. Q.; Liu, Y; Weiss, N. O.; Lin, Z. Y.; Huang, Y. et al. Large area growth and electrical properties of p-type MoS2 atomic layers. Nano Lett. 2015, 15, 709–713.

    Article  Google Scholar 

  34. Tongay, S.; Suh, J.; Ataca, C.; Fan, W.; Luce, A.; Kang, J. S.; Liu, J.; Ko, C.; Raghunathanan, R.; Zhou, J. et al. Defects activated photoluminescence in two-dimensional semiconductors: Interplay between bound, charged, and free excitons. Sci. Rep. 2013, 3, 2657.

    Article  Google Scholar 

  35. Chow, P. K.; Jacobs-Gedrim, R. B.; Gao, J.; Lu, T. M.; Yu, B.; Terrones, H.; Koratkar, N. Defect-Induced photoluminescence in monolayer semiconducting transition metal dichalcogenides. ACS Nano 2015, 9, 1520–1527.

    Article  Google Scholar 

  36. Saigal, N.; Ghosh, S. Evidence for two distinct defect related luminescence features in monolayer MoS2. Appl. Phys. Lett. 2016, 109, 122105.

    Article  Google Scholar 

  37. Shi, W.; Lin, M. L.; Tan, Q. H.; Qiao, X. F.; Zhang, J.; Tan, P. H. Raman and photoluminescence spectra of two-dimensional nanocrystallites of monolayer WS2 and MoS2. 2D Mater. 2016, 3, 025016.

    Article  Google Scholar 

  38. He, Z. Y.; Wang, X. C.; Xu, W. S.; Zhou, Y. Q.; Sheng, Y. W.; Rong, Y M.; Smith, J. M.; Warner, J. H. Revealing defect-state photoluminescence in monolayer WS2 by cryogenic laser processing. ACS Nano 2016, 10, 5847–5855.

    Article  Google Scholar 

  39. Wang, Y. L.; Cong, C. X.; Qiu, C. Y; Yu, T. Raman spectroscopy study of lattice vibration and crystallographic orientation of monolayer MoS2 under uniaxial strain. Small 2013, 9, 2857–2861.

    Article  Google Scholar 

  40. Li, B.; Gong, Y. J.; Hu, Z. L.; Brunetto, G.; Yang, Y. C.; Ye, G. L.; Zhang, Z. H.; Lei, S. D.; Jin, Z. H.; Bianco, E. et al. Solid-vapor reaction growth of transition-metal dichalcogenide monolayers. Angew. Chem., Int. Ed 2016, 55, 10656–10661.

    Article  Google Scholar 

  41. Tonndorf, P.; Schmidt, R.; Bottger, P.; Zhang, X.; Borner, J.; Liebig, A.; Albrecht, M.; Kloc, C.; Gordan, O.; Zahn, D. R. T. et al. Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and MoS2. Opt. Express 2013, 21, 4908–4916.

    Article  Google Scholar 

  42. Cong, C. X.; Shang, J. Z.; Wu, X.; Cao, B. C.; Peimyoo, N.; Qiu, C. Y.; Sun, L. T.; Yu, T. Synthesis and optical properties of large-are a single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition. Adv. Opt. Mater. 2014, 2, 131–136.

    Article  Google Scholar 

  43. Peimyoo, N.; Shang, J. Z.; Cong, C. X.; Shen, X. N.; Wu, X. Y.; Yeow, E. K. L.; Yu, T. Non blinking, intense two-dimensional light emitter: Monolayer WS2 triangles. ACS Nano 2013, 7, 10985–10994.

    Article  Google Scholar 

  44. Schmidt, T.; Lischka, K.; Zulehner, W. Excitation-power dependence of the near-band-edge photoluminescence of semiconductors. Phys. Rev. B 1992, 45, 8989–8994.

    Article  Google Scholar 

  45. Wu, W. T.; Luo, Z. Z.; Shen, Y. T.; Zhao, W. W.; Wang, W. H.; Nan, H. Y.; Guo, X. T.; Sun, L. T.; Wang, X. R.; You, Y. M. et al. Defects as a factor limiting carrier mobility in MoS2 A spectroscopic investigation. Nano Res. 2016, 9, 3622–3631.

    Article  Google Scholar 

  46. Nan, H. Y.; Wang, Z. L.; Wang, W. H.; Liang, Z.; Lu, Y.; Chen, Q.; He, D. W.; Tan, P. H.; Miao, F.; Wang, X. R.; et al. Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano 2014, 8, 5738–5745.

    Article  Google Scholar 

  47. Kang, N.; Paudel, H. P.; Leuenberger, M. N.; Tetard, L.; Khondaker, S. I. Photoluminescence quenching in single-layer MoS2 via oxygen plasma treatment. J. Phys. Chem. C 2014, 118, 21258–21263.

    Article  Google Scholar 

  48. Islam, M. R.; Kang, N.; Bhanu, U.; Paudel, H. P.; Erementchouk, M.; Tetard, L.; Leuenberger, M. N.; Khondaker, S. I. Tuning the electrical property via defect engineering of single layer MoS2 by oxygen plasma. Nanoscale 2014, 6, 10033–10039.

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (No. 11304060) and the Foundation of Harbin Institute of Technology for the Incubation Program of the Development of Basic Research Outstanding Talents (No. 01509321).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Sui or Yang Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Tao, L., Miao, P. et al. Strong room-temperature emission from defect states in CVD-grown WSe2 nanosheets. Nano Res. 11, 3922–3930 (2018). https://doi.org/10.1007/s12274-018-1970-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-1970-7

Keywords

Navigation