Li, X. M.; Tao, L.; Chen, Z. F.; Fang, H.; Li, X. S.; Wang, X. R.; Xu, J.-B.; Zhu, H. W. Graphene and related two-dimensional materials: Structure-property relationships for electronics and optoelectronics. Appl. Phys. Rev.
2017, 4, 021306.
Article
Google Scholar
Tan, C. L.; Cao, X. H.; Wu, X.-J.; He, Q. Y.; Yang, J.; Zhang, X.; Chen, J. Z.; Zhao, W.; Han, S. K.; Nam, G.-H. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev.
2017, 117, 6225–6331.
Article
Google Scholar
Chhowalla, M.; Jena, D.; Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater.
2016, 1, 16052.
Article
Google Scholar
Xu, M. S.; Liang, T.; Shi, M. M.; Chen, H. Z. Graphenelike two-dimensional materials. Chem. Rev.
2013, 113, 3766–3798.
Article
Google Scholar
Novoselov, K. S. Nobel lecture: Graphene: Materials in the flatland. Rev. Mod. Phys.
2011, 83, 837–849.
Article
Google Scholar
Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of twodimensional transition metal dichalcogenides. Nat. Nanotechnol.
2012, 7, 699–712.
Article
Google Scholar
Duan, X. D.; Wang, C.; Pan, A. L.; Yu, R. Q.; Duan, X. F. Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: Opportunities and challenges. Chem. Soc. Rev.
2015, 44, 8859–8876.
Article
Google Scholar
Liu, B. L; Abbas, A.; Zhou, C. W. Two-dimensional semiconductors: From materials preparation to electronic applications. Adv. Electron. Mater.
2017, 3, 1700045.
Article
Google Scholar
Mak, K. F.; Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics
2016, 10, 216–226.
Article
Google Scholar
Wang, H. T.; Yuan, H. T.; Hong, S. S.; Li, Y. B.; Cui, Y. Physical and chemical tuning of two-dimensional transition metal dichalcogenides. Chem. Soc. Rev.
2015, 44, 2664–2680.
Article
Google Scholar
Bernardi, M.; Palummo, M.; Grossman, J. C. Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett.
2013, 13, 3664–3670.
Article
Google Scholar
Yun, W. S.; Han, S. W.; Hong, S. C.; Kim, I. G.; Lee, J. D. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te). Phys. Rev. B
2012, 85, 033305.
Article
Google Scholar
Hanbicki, A. T.; Currie, M.; Kioseoglou, G.; Friedman, A. L.; Jonker, B. T. Measurement of high exciton binding energy in the monolayer transition-metal dichalcogenides WS2 and WSe2. Solid State Commun.
2015, 203, 16–20.
Article
Google Scholar
Zhu, B. R.; Chen, X.; Cui, X. D. Exciton binding energy of monolayer WS2. Sci. Rep.
2015, 5, 9218.
Article
Google Scholar
Zhang, W. X.; Huang, Z. S.; Zhang, W. L.; Li, Y. R. Twodimensional semiconductors with possible high room temperature mobility. Nano Res.
2014, 7, 1731–1737.
Article
Google Scholar
Akinwande, D.; Petrone, N.; Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun.
2014, 5, 5678.
Article
Google Scholar
Chang, H.-Y.; Yang, S. X.; Lee, J.; Tao, L.; Hwang, W.-S.; Jena, D.; Lu, N. S.; Akinwande, D. High-performance, highly bendable MoS2 transistors with high-k dielectrics for flexible low-power systems. ACS Nano
2013, 7, 5446–5452.
Article
Google Scholar
Pu, J.; Funahashi, K.; Chen, C. H.; Li, M. Y.; Li, L. J.; Takenobu, T. Highly flexible and high-performance complementary inverters of large-area transition metal dichalcogenide monolayers. Adv. Mater.
2016, 28, 4111–4119.
Article
Google Scholar
Lim, Y. R.; Song, W.; Han, J. K.; Lee, Y. B.; Kim, S. J.; Myung, S.; Lee, S. S.; An, K. S.; Choi, C. J.; Lim, J. Waferscale, homogeneous MoS2 layers on plastic substrates for flexible visible-light photodetectors. Adv. Mater.
2016, 28, 5025–5030.
Article
Google Scholar
Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Twodimensional atomic crystals. Proc. Natl. Acad. Sci. USA
2005, 102, 10451–10453.
Article
Google Scholar
Mak, K. F.; McGill, K. L.; Park, J.; McEuen, P. L. The valley Hall effect in MoS2 transistors. Science
2014, 344, 1489–1492.
Article
Google Scholar
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science
2004, 306, 666–669.
Article
Google Scholar
Mattevi, C.; Kim, H.; Chhowalla, M. A review of chemical vapour deposition of graphene on copper. J. Mater. Chem.
2011, 21, 3324–3334.
Article
Google Scholar
Kapolnek, D.; Wu, X. H.; Heying, B.; Keller, S.; Keller, B. P.; Mishra, U. K.; DenBaars, S. P.; Speck, J. S. Structural evolution in epitaxial metalorganic chemical vapor deposition grown GaN films on sapphire. Appl. Phys. Lett.
1995, 67, 1541–1543.
Article
Google Scholar
Yu, Y. F.; Li, C.; Liu, Y.; Su, L. Q.; Zhang, Y.; Cao, L. Y. Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS2 films. Sci. Rep.
2013, 3, 1866.
Article
Google Scholar
Gao, Y.; Liu, Z. B.; Sun, D.-M.; Huang, L.; Ma, L.-P.; Yin, L.-C.; Ma, T.; Zhang, Z.; Ma, X.-L.; Peng, L.-M. et al. Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils. Nat. Commun.
2015, 6, 8569.
Article
Google Scholar
Yun, S. J.; Chae, S. H.; Kim, H.; Park, J. C.; Park, J.-H.; Han, G. H.; Lee, J. S.; Kim, S. M.; Oh, H. M.; Seok, J. et al. Synthesis of centimeter-scale monolayer tungsten disulfide film on gold foils. ACS Nano
2015, 9, 5510–5519.
Article
Google Scholar
Peimyoo, N.; Shang, J. Z.; Cong, C. X.; Shen, X. N.; Wu, X. Y.; Yeow, E. K. L.; Yu, T. Nonblinking, intense two-dimensional light emitter: Monolayer WS2 triangles. ACS Nano
2013, 7, 10985–10994.
Article
Google Scholar
Zhang, Y.; Zhang, Y. F.; Ji, Q. Q.; Ju, J.; Yuan, H. T.; Shi, J. P.; Gao, T.; Ma, D. L.; Liu, M. X.; Chen, Y. B. et al. Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary. ACS Nano
2013, 7, 8963–8971.
Article
Google Scholar
Cong, C. X.; Shang, J. Z.; Wu, X.; Cao, B. C.; Peimyoo, N.; Qiu, C. Y.; Sun, L. T.; Yu, T. Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition. Adv. Optical Mater.
2014, 2, 131–136.
Article
Google Scholar
Li, S. S.; Wang, S. F.; Tang, D.-M.; Zhao, W. J.; Xu, H. L.; Chu, L. Q.; Bando, Y.; Golberg, D.; Eda, G. Halide-assisted atmospheric pressure growth of large WSe2 and WS2 monolayer crystals. Appl. Mater. Today
2015, 1, 60–66.
Article
Google Scholar
Lan, C. Y.; Li, C.; Yin, Y.; Liu, Y. Large-area synthesis of monolayer WS2 and its ambient-sensitive photo-detecting performance. Nanoscale
2015, 7, 5974–5980.
Article
Google Scholar
Jiang, X. C.; Xiong, Q. H.; Nam, S.; Qian, F.; Li, Y.; Lieber, C. M. InAs/InP radial nanowire heterostructures as high electron mobility devices. Nano Lett.
2007, 7, 3214–3218.
Article
Google Scholar
Ford, A. C.; Ho, J. C.; Fan, Z. Y.; Ergen, O.; Altoe, V.; Aloni, S.; Razavi, H.; Javey, A. Synthesis, contact printing, and device characterization of Ni-catalyzed, crystalline InAs nanowires. Nano Res.
2008, 1, 32–39.
Article
Google Scholar
Gurarslan, A.; Yu, Y. F.; Su, L. Q.; Yu, Y. L.; Suarez, F.; Yao, S. S.; Zhu, Y.; Ozturk, M.; Zhang, Y.; Cao, L. Y. Surface-energy-assisted perfect transfer of centimeter-scale monolayer and few-layer MoS2 films onto arbitrary substrates. ACS Nano
2014, 8, 11522–11528.
Article
Google Scholar
Benameur, M. M.; Radisavljevic, B.; Héron, J. S.; Sahoo, S.; Berger, H.; Kis, A. Visibility of dichalcogenide nanolayers. Nanotechnology
2011, 22, 125706.
Article
Google Scholar
Zhang, X.; Qiao, X.-F.; Shi, W.; Wu, J.-B.; Jiang, D.-S.; Tan, P.-H. Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev.
2015, 44, 2757–2785.
Article
Google Scholar
McCreary, K. M.; Hanbicki, A. T.; Singh, S.; Kawakami, R. K.; Jernigan, G. G.; Ishigami, M.; Ng, A.; Brintlinger, T. H.; Stroud, R. M.; Jonker, B. T. The effect of preparation conditions on Raman and photoluminescence of monolayer WS2. Sci. Rep.
2016, 6, 35154.
Article
Google Scholar
Peimyoo, N.; Shang, J. Z.; Yang, W. H.; Wang, Y. L.; Cong, C. X.; Yu, T. Thermal conductivity determination of suspended mono- and bilayer WS2 by Raman spectroscopy. Nano Res.
2015, 8, 1210–1221.
Article
Google Scholar
Zhao, W. J.; Ghorannevis, Z.; Amara, K. K.; Pang, J. R.; Toh, M.; Zhang, X.; Kloc, C.; Tan, P. H.; Eda, G. Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2. Nanoscale
2013, 5, 9677–9683.
Article
Google Scholar
Zhao, W. J.; Ghorannevis, Z.; Chu, L. Q.; Toh, M.; Kloc, C.; Tan, P.-H.; Eda, G. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano
2013, 7, 791–797.
Article
Google Scholar
Su, L. Q.; Yu, Y. F.; Cao, L. Y.; Zhang, Y. Effects of substrate type and material-substrate bonding on hightemperature behavior of monolayer WS2. Nano Res.
2015, 8, 2686–2697.
Article
Google Scholar
Kim, W.; Javey, A.; Vermesh, O.; Wang, Q.; Li, Y. M.; Dai, H. J. Hysteresis caused by water molecules in carbon nanotube field-effect transistors. Nano Lett.
2003, 3, 193–198.
Article
Google Scholar
Park, Y.; Baac, H. W.; Heo, J.; Yoo, G. Thermally activated trap charges responsible for hysteresis in multilayer MoS2 field-effect transistors. Appl. Phys. Lett.
2016, 108, 083102.
Article
Google Scholar
Qiu, H.; Pan, L. J.; Yao, Z. N.; Li, J. J.; Shi, Y.; Wang, X. R. Electrical characterization of back-gated bi-layer MoS2 field-effect transistors and the effect of ambient on their performances. Appl. Phys. Lett.
2012, 100, 123104.
Article
Google Scholar
Ghatak, S.; Pal, A. N.; Ghosh, A. Nature of electronic states in atomically thin MoS2 field-effect transistors. ACS Nano
2011, 5, 7707–7712.
Article
Google Scholar
Li, S.-L.; Wakabayashi, K.; Xu, Y.; Nakaharai, S.; Komatsu, K.; Li, W.-W.; Lin, Y.-F.; Aparecido-Ferreira, A.; Tsukagoshi, K. Thickness-dependent interfacial coulomb scattering in atomically thin field-effect transistors. Nano Lett.
2013, 13, 3546–3552.
Article
Google Scholar
Lee, Y.; Lee, J.; Bark, H.; Oh, I.-K.; Ryu, G. H.; Lee, Z.; Kim, H.; Cho, J. H.; Ahn, J.-H.; Lee, C. Synthesis of waferscale uniform molybdenum disulfide films with control over the layer number using a gas phase sulfur precursor. Nanoscale
2014, 6, 2821–2826.
Article
Google Scholar
Lee, Y. H.; Zhang, X. Q.; Zhang, W. J.; Chang, M. T.; Lin, C. T.; Chang, K. D.; Yu, Y. C.; Wang, J. T. W.; Chang, C. S.; Li, L. J. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater.
2012, 24, 2320–2325.
Article
Google Scholar
Liu, K.-K.; Zhang, W. J.; Lee, Y.-H.; Lin, Y.-C.; Chang, M.-T.; Su, C.-Y.; Chang, C.-S.; Li, H.; Shi, Y. M.; Zhang, H. et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett.
2012, 12, 1538–1544.
Article
Google Scholar
Perea-López, N.; Elías, A. L.; Berkdemir, A.; Castro- Beltran, A.; Gutiérrez, H. R.; Feng, S. M.; Lv, R. T.; Hayashi, T.; López-Urías, F.; Ghosh, S. et al. Photosensor device based on few-layered WS2 films. Adv. Funct. Mater.
2013, 23, 5511–5517.
Article
Google Scholar
Pawbake, A. S.; Waykar, R. G.; Late, D. J.; Jadkar, S. R. Highly transparent wafer-scale synthesis of crystalline WS2 nanoparticle thin film for photodetector and humiditysensing applications. ACS Appl. Mater. Interfaces
2016, 8, 3359–3365.
Article
Google Scholar
Yao, J. D.; Zheng, Z. Q.; Shao, J. M.; Yang, G. W. Stable, highly-responsive and broadband photodetection based on large-area multilayered WS2 films grown by pulsed-laser deposition. Nanoscale
2015, 7, 14974–14981.
Article
Google Scholar
Guo, N.; Hu, W. D.; Liao, L.; Yip, S.; Ho, J. C.; Miao, J. S.; Zhang, Z.; Zou, J.; Jiang, T.; Wu, S. W. et al. Anomalous and highly efficient InAs nanowire phototransistors based on majority carrier transport at room temperature. Adv. Mater.
2014, 26, 8203–8209.
Article
Google Scholar
Lan, C. Y.; Li, C.; Yin, Y.; Guo, H. Y.; Wang, S. Synthesis of single-crystalline GeS nanoribbons for high sensitivity visible-light photodetectors. J. Mater. Chem. C
2015, 3, 8074–8079.
Article
Google Scholar
Lan, C. Y.; Li, C.; Wang, S.; He, T. Y.; Zhou, Z. F.; Wei, D. P.; Guo, H. Y.; Yang, H.; Liu, Y. Highly responsive and broadband photodetectors based on WS2–graphene van der Waals epitaxial heterostructures. J. Mater. Chem. C
2017, 5, 1494–1500.
Article
Google Scholar
Binet, F.; Duboz, J. Y.; Rosencher, E.; Scholz, F.; Härle, V. Mechanisms of recombination in GaN photodetectors. Appl. Phys. Lett.
1996, 69, 1202–1204.
Article
Google Scholar
Chen, R.-S.; Chen, H.-Y.; Lu, C.-Y.; Chen, K.-H.; Chen, C.-P.; Chen, L.-C.; Yang, Y.-J. Ultrahigh photocurrent gain in m-axial GaN nanowires. Appl. Phys. Lett.
2007, 91, 223106.
Article
Google Scholar
Soci, C.; Zhang, A.; Xiang, B.; Dayeh, S. A.; Aplin, D. P. R.; Park, J.; Bao, X. Y.; Lo, Y.-H.; Wang, D. ZnO nanowire UV photodetectors with high internal gain. Nano Lett.
2007, 7, 1003–1009.
Article
Google Scholar
Hu, P. A.; Wang, L. F.; Yoon, M.; Zhang, J.; Feng, W.; Wang, X. N.; Wen, Z. Z.; Idrobo, J. C.; Miyamoto, Y.; Geohegan, D. B. et al. Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates. Nano Lett.
2013, 13, 1649–1654.
Article
Google Scholar
Jiang, Y.; Zhang, W. J.; Jie, J. S.; Meng, X. M.; Fan, X.; Lee, S. T. Photoresponse properties of CdSe single-nanoribbon photodetectors. Adv. Funct. Mater.
2007, 17, 1795–1800.
Article
Google Scholar
Cunningham, G.; Khan, U.; Backes, C.; Hanlon, D.; McCloskey, D.; Donegan, J. F.; Coleman, J. N. Photoconductivity of solution-processed MoS2 films. J. Mater. Chem. C
2013, 1, 6899–6904.
Article
Google Scholar
Zhou, X.; Zhang, Q.; Gan, L.; Li, H. Q.; Zhai, T. Y. Large-size growth of ultrathin SnS2 nanosheets and high performance for phototransistors. Adv. Funct. Mater.
2016, 26, 4405–4413.
Article
Google Scholar
Zhou, Y. B.; Nie, Y. F.; Liu, Y. J.; Yan, K.; Hong, J. H.; Jin, C. H.; Zhou, Y.; Yin, J. B.; Liu, Z. F.; Peng, H. L. Epitaxy and photoresponse of two-dimensional GaSe crystals on flexible transparent mica sheets. ACS Nano
2014, 8, 1485–1490.
Article
Google Scholar
Zheng, Z. Q.; Zhang, T. M.; Yao, J. D.; Zhang, Y.; Xu, J. R.; Yang, G. W. Flexible, transparent and ultra-broadband photodetector based on large-area WSe2 film for wearable devices. Nanotechnology
2016, 27, 225501.
Article
Google Scholar
Ghorbani-Asl, M.; Borini, S.; Kuc, A.; Heine, T. Straindependent modulation of conductivity in single-layer transition-metal dichalcogenides. Phys. Rev. B
2013, 87, 235434.
Article
Google Scholar
Wang, Y. L.; Cong, C. X.; Yang, W. H.; Shang, J. Z.; Peimyoo, N.; Chen, Y.; Kang, J. Y.; Wang, J. P.; Huang, W.; Yu, T. Strain-induced direct–indirect bandgap transition and phonon modulation in monolayer WS2. Nano Res.
2015, 8, 2562–2572.
Article
Google Scholar
De Fazio, D.; Goykhman, I.; Yoon, D.; Bruna, M.; Eiden, A.; Milana, S.; Sassi, U.; Barbone, M.; Dumcenco, D.; Marinov, K. et al. High responsivity, large-area graphene/MoS2 flexible photodetectors. ACS Nano
2016, 10, 8252–8262.
Article
Google Scholar