Skip to main content
Log in

Facile synthesis of porous germanium-iron bimetal oxide nanowires as anode materials for lithium-ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Germanium-based oxide has been found to be a promising high-capacity anode material for lithium-ion batteries (LIBs). However, it exhibits poor electrochemical performance because of the drastic volume change during cycling. Herein, we designed porous Ge-Fe bimetal oxide nanowires (Ge-Fe-Ox-700 NWs) by a large-scale and facile solvothermal reaction. When used as the anode material for LIBs, these Ge-Fe-Ox-700 NWs exhibited superior electrochemical performance (∼ 1,120 mAh·g−1 at a current density of 100 mA·g−1) and good cycling performance (∼ 750 mAh·g−1 after 50 cycles at a current density of 100 mA·g−1). The improved performance is due to the small NW diameter, which allows for better accommodation of the drastic volume changes and zero-dimensional nanoparticles, which shorten the diffusion length of ions and electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem., Int. Ed. 2008, 47, 2930–2946.

    Article  Google Scholar 

  2. Chae, C.; Noh, H. J.; Lee, J. K.; Scrosati, B.; Sun, Y. K. A high-energy Li-ion battery using a silicon-based anode and a nano-structured layered composite cathode. Adv. Funct. Mater. 2014, 24, 3036–3042.

    Article  Google Scholar 

  3. Wu, Z. S.; Ren, W. C.; Xu, L.; Li, F.; Cheng, H. M. Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 2011, 5, 5463–5471.

    Article  Google Scholar 

  4. Zheng, F. C.; Yang, Y.; Chen, Q. W. High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nat. Commun. 2014, 5, 5261.

    Article  Google Scholar 

  5. Flandrois, S.; Simon, B. Carbon materials for lithium-ion rechargeable batteries. Carbon 1999, 37, 165–180.

    Article  Google Scholar 

  6. Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35.

    Article  Google Scholar 

  7. Cui, G. L.; Gu, L.; Zhi, L. J.; Kaskhedikar, N.; van Aken, P. A.; Müllen, K.; Maier, J. A germanium–carbon nanocomposite material for lithium batteries. Adv. Mater. 2008, 20, 3079–3083.

    Article  Google Scholar 

  8. Wang, X. L.; Han, W. Q.; Chen, H. Y.; Bai, J. M.; Tyson, T. A.; Yu, X. Q.; Wang, X. J.; Yang, X. Q. Amorphous hierarchical porous GeOx as high-capacity anodes for Li ion batteries with very long cycling life. J. Am. Chem. Soc. 2011, 133, 20692–20695.

    Article  Google Scholar 

  9. Lv, D. P.; Gordin, M. L.; Yi, R.; Xu, T.; Song, J. X.; Jiang, Y. B.; Choi, D.; Wang, D. H. GeOx/reduced graphene oxide composite as an anode for Li-ion batteries: Enhanced capacity via reversible utilization of Li2O along with improved rate performance. Adv. Funct.Mater. 2014, 24, 1059–1066.

    Article  Google Scholar 

  10. Fuller, C. S.; Severiens, J. C. Mobility of impurity ions in germanium and silicon. Phys. Rev. 1954, 96, 21–24.

    Article  Google Scholar 

  11. Graetz, J.; Ahn, C. C.; Yazami, R.; Fultz, B. Nanocrystalline and thin film germanium electrodes with high lithium capacity and high rate capabilities. J. Electrochem. Soc. 2004, 151, A698–A702.

    Article  Google Scholar 

  12. Murugesan, S.; Harris, J. T.; Korgel, B. A.; Stevenson, K. J. Copper-coated amorphous silicon particles as an anode material for lithium-ion batteries. Chem. Mater. 2012, 24, 1306–1315.

    Article  Google Scholar 

  13. Lee, H.; Cho, J. Sn78Ge22@carbon core-shell nanowires as fast and high-capacity lithium storage media. Nano Lett. 2007, 7, 2638–2641.

    Article  Google Scholar 

  14. Ren, J. G.; Wu, Q. H.; Tang, H.; Hong, G.; Zhang, W. J.; Lee, S. T. Germanium-graphene composite anode for highenergy lithium batteries with long cycle life. J. Mater. Chem. A 2013, 1, 1821–1826.

    Article  Google Scholar 

  15. Abel, P. R.; Lin, Y. M.; de Souza, T.; Chou, C. Y.; Gupta, A.; Goodenough, J. B.; Hwang, G. S.; Heller, A.; Mullins, C. B. Nanocolumnar germanium thin films as a high-rate sodium-ion battery anode material. J. Phys. Chem. C 2013, 117, 18885–18890.

    Article  Google Scholar 

  16. Li, L.; Seng, K. H.; Feng, C. Q.; Liu, H. K.; Guo, Z. P. Synthesis of hollow GeO2 nanostructures, transformation into Ge@C, and lithium storage properties. J. Mater. Chem. A 2013, 1, 7666–7672.

    Article  Google Scholar 

  17. Park, M. H.; Cho, Y.; Kim, K.; Kim, J.; Liu, M. L.; Cho, J. Germanium nanotubes prepared by using the kirkendall effect as anodes for high-rate lithium batteries. Angew. Chem., Int. Ed. 2011, 123, 9821–9824.

    Article  Google Scholar 

  18. Yang, L. C.; Gao, Q. S.; Li, L.; Tang, Y.; Wu, Y. P. Mesoporous germanium as anode material of high capacity and good cycling prepared by a mechanochemical reaction. Electrochem. Commun. 2010, 12, 418–421.

    Article  Google Scholar 

  19. Xue, D. J.; Xin, S.; Yan, Y.; Jiang, K. C.; Yin, Y. X.; Guo, Y. G.; Wan, L. J. Improving the electrode performance of Ge through Ge@C core-shell nanoparticles and graphene networks. J. Amer. Chem. Soc. 2012, 134, 2512–2515.

    Article  Google Scholar 

  20. Feng, J. K.; Lai, M. O.; Lu, L. Zn2GeO4 Nanorods synthesized by low-temperature hydrothermal growth for high-capacity anode of lithium battery. Electrochem. Commun. 2011, 13, 287–289.

    Article  Google Scholar 

  21. Yi, R.; Feng, J. K.; Lv, D. P.; Gordin, M. L.; Chen, S. R.; Choi, D.; Wang, D. H. Amorphous Zn2GeO4 nanoparticles as anodes with high reversible capacity and long cycling life for Li-ion batteries. Nano Energy 2013, 2, 498–504.

    Article  Google Scholar 

  22. Yan, Y.; Du, F. H.; Shen, X. P.; Ji, Z. Y.; Zhou, H.; Zhu, G. X. Porous SnO2-Fe2O3 nanocubes with improved electrochemical performance for lithium ion batteries. Dalton Trans. 2014, 43, 17544–17550.

    Article  Google Scholar 

  23. Zhou, M. J.; Gordin, M. L.; Chen, S. R.; Xu, T.; Song, J. X.; Lv, D. P.; Wang, D. H. Enhanced performance of SiO/Fe2O3 composite as an anode for rechargeable Li-ion batteries. Electrochem. Commun. 2013, 28, 79–82.

    Article  Google Scholar 

  24. Gao, Q. S.; Chen, P.; Zhang, Y. H.; Tang, Y. Synthesis and characterization of organic-inorganic hybrid GeOx/ ethylenediamine nanowires. Adv. Mater. 2008, 20, 1837–1842.

    Article  Google Scholar 

  25. Yao, W. T.; Yu, S. H.; Wu, Q. S. From mesostructured wurtzite ZnS-nanowire/amine nanocomposites to ZnS nanowires exhibiting quantum size effects: A mild-solution chemistry approach. Adv. Funct. Mater. 2007, 17, 623–631.

    Article  Google Scholar 

  26. Yu, L.; Zou, R. J.; Zhang, Z. Y.; Song, G. S.; Chen, Z. G.; Yang, J. M.; Hu, J. Q. A Zn2GeO4-ethylenediamine hybrid nanoribbon membrane as a recyclable adsorbent for the highly efficient removal of heavy metals from contaminated water. Chem. Commun. 2011, 47, 10719–10721.

    Article  Google Scholar 

  27. Na, Z. L.; Huang, G.; Liang, F.; Yin, D. M.; Wang, L. M. A core-shell Fe/Fe2O3 nanowire as a high-performance anode material for lithium-ion batteries. Chem. Europ. J. 2016, 22, 12081–12087.

    Article  Google Scholar 

  28. Li, W. H.; Zeng, L. C.; Wu, Y.; Yu, Y. Nanostructured electrode materials for lithium-ion and sodium-ion batteries via electrospinning. Sci. China Mater. 2016, 59, 287–321.

    Article  Google Scholar 

  29. Wu, Y.; Liu, X. W.; Yang, Z. Z.; Gu, L.; Yu, Y. Nitrogendoped ordered mesoporous anatase TiO2 nanofibers as anode materials for high performance sodium-ion batteries. Small 2016, 12, 3522–3529.

    Article  Google Scholar 

  30. Sarkar, S.; Borah, R.; Santhosha, A. L.; Dhanya, R.; Narayana, C.; Bhattacharyya, A. J.; Peter, S. C. Heterostructure composites of rGO/GeO2/PANI with enhanced performance for Li ion battery anode material. J. Power Sources 2016, 306, 791–800.

    Article  Google Scholar 

  31. Guo, W. X.; Sun, W. W.; Lv, L. P.; Kong, S. F.; Wang, Y. Microwave-assisted morphology evolution of Fe-based metal-organic frameworks and their derived Fe2O3 nanostructures for Li-ion storage. ACS Nano 2017, 11, 4198–4205.

    Article  Google Scholar 

  32. Wei, W.; Jia, F. F.; Qu, P.; Huang, Z. N.; Wang, H.; Guo, L. Morphology memory but reconstructing crystal structure: Porous hexagonal GeO2 nanorods for rechargeable lithium-ion batteries. Nanoscale 2017, 9, 3961–3968.

    Article  Google Scholar 

  33. Liu, L.; Zhang, H. J.; Mu, Y. P.; Yang, J.; Wang, Y. Porous iron cobaltate nanoneedles array on nickel foam as anode materials for lithium-ion batteries with enhanced electrochemical performance. ACS Appl. Mater. Interfaces 2016, 8, 1351–1359.

    Article  Google Scholar 

  34. Zhao, L.; Gao, M. M.; Yue, W. B.; Jiang, Y.; Wang, Y.; Ren, Y.; Hu, F. Q. Sandwich-structured graphene-Fe3O4@carbon nanocomposites for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 9709–9715.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21171015, 21373195, 51522212 and 51421002), the “Recruitment Program of Global Experts”, the program for New Century Excellent Talents in University (No. NCET- 12-0515), the Fundamental Research Funds for the Central Universities (No. WK340000004), and the Collaborative Innovation Center of Suzhou Nano Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Yu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, X., Huan, H., Liu, X. et al. Facile synthesis of porous germanium-iron bimetal oxide nanowires as anode materials for lithium-ion batteries. Nano Res. 11, 3702–3709 (2018). https://doi.org/10.1007/s12274-017-1938-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1938-z

Keywords

Navigation