Skip to main content

Ultra-small Cu nanoparticles embedded in N-doped carbon arrays for electrocatalytic CO2 reduction reaction in dimethylformamide

Abstract

The development of heterogeneous catalysts with a well-defined micro structure to promote their activity and stability for electrocatalytic CO2 reduction has been shown to be a promising strategy. In this work, Cu nanoparticles (∼ 4 nm in diameter) embedded in N-doped carbon (Cu@NC) arrays were fabricated by thermal decomposition of copper tetracyanoquinodimethane (CuTCNQ) under N2. Compared to polycrystalline copper electrodes, the Cu@NC arrays provide a significantly improved number of catalytically active sites. This resulted in a 0.7 V positive shift in onset potential, producing a catalytic current density an order magnitude larger at a potential of–2.7 V vs. Fc/Fc+ (Fc = ferrocene) in dimethylformamide (DMF). By controlling the water content in the DMF solvent, the CO2 reduction product distribution can be tuned. Under optimal conditions (0.5 vol% water), 64% HCOO, 20% CO, and 13% H2 were obtained. The Cu@NC arrays exhibited excellent catalytic stability with only a 0.5% decrease in the steady-state catalytic current during 6 h of electrolysis. The three-dimensional (3D) array structure of the Cu@NC was demonstrated to be effective for improving the catalytic activity of copper based catalysts while maintaining long-term catalytic stability.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

    Article  Google Scholar 

  2. [2]

    Qiao, J. L.; Liu, Y. Y.; Hong, F.; Zhang, J. J. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 2014, 43, 631–675.

    Article  Google Scholar 

  3. [3]

    Kondratenko, E. V.; Mul, G.; Baltrusaitis, J.; Larrazábal, G. O.; Pérez-Ramírez, J. Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy Environ. Sci. 2013, 6, 3112–3135.

    Article  Google Scholar 

  4. [4]

    Banerjee, A.; Dick, G. R.; Yoshino, T.; Kanan, M. W. Carbon dioxide utilization via carbonate-promoted C–H carboxylation. Nature 2016, 531, 215–219.

    Article  Google Scholar 

  5. [5]

    Li, Y. W.; Sun, Q. Recent advances in breaking scaling relations for effective electrochemical conversion of CO2. Adv. Energy Mater. 2016, 6, 1600463.

    Article  Google Scholar 

  6. [6]

    Chen, T. Y.; Rodionov, V. O. Controllable catalysis with nanoparticles: Bimetallic alloy systems and surface adsorbates. ACS Catal. 2016, 6, 4025–4033.

    Article  Google Scholar 

  7. [7]

    Appel, A. M.; Bercaw, J. E.; Bocarsly, A. B.; Dobbek, H.; DuBois, D. L.; Dupuis, M.; Ferry, J. G.; Fujita, E.; Hille, R.; Kenis, P. J. A. et al. Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem. Rev. 2013, 113, 6621–6658.

    Article  Google Scholar 

  8. [8]

    Liu, M.; Pang, Y. J.; Zhang, B.; De Luna, P.; Voznyy, O.; Xu, J. X.; Zheng, X. L.; Dinh, C. T.; Fan, F. J.; Cao, C. H. et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 2016, 537, 382–386.

    Article  Google Scholar 

  9. [9]

    Singh, M. R.; Kwon, Y.; Lum, Y.; Ager, J. W.; Bell, A. T. Hydrolysis of electrolyte cations enhances the electrochemical reduction of CO2 over Ag and Cu. J. Am. Chem. Soc. 2016, 138, 13006–13012.

    Article  Google Scholar 

  10. [10]

    Li, F. W.; Chen, L.; Knowles, G. P.; MacFarlane, D. R.; Zhang, J. Hierarchical mesoporous SnO2 nanosheets on carbon cloth: A robust and flexible electrocatalyst for CO2 reduction with high efficiency and selectivity. Angew. Chem., Int. Ed. 2017, 56, 505–509.

    Article  Google Scholar 

  11. [11]

    Klinkova, A.; De Luna, P.; Dinh, C. T.; Voznyy, O.; Larin, E. M.; Kumacheva, E.; Sargent, E. H. Rational design of efficient palladium catalysts for electroreduction of carbon dioxide to formate. ACS Catal. 2016, 6, 8115–8120.

    Article  Google Scholar 

  12. [12]

    Chen, Y. H.; Kanan, M. W. Tin oxide dependence of the CO2 Reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts. J. Am. Chem. Soc. 2012, 134, 1986–1989.

    Article  Google Scholar 

  13. [13]

    Rasul, S.; Anjum, D. H.; Jedidi, A.; Minenkov, Y.; Cavallo, L.; Takanabe, K. A highly selective copper-indium bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2 to CO. Angew. Chem., Int. Ed. 2015, 54, 2146–2150.

    Article  Google Scholar 

  14. [14]

    Zhu, W. L.; Michalsky, R.; Metin, Ö.; Lv, H. F.; Guo, S. J.; Wright, C. J.; Sun, X. L.; Peterson, A. A.; Sun, S. H. Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. J. Am. Chem. Soc. 2013, 135, 16833–16836.

    Article  Google Scholar 

  15. [15]

    Huan, T. N.; Simon, P.; Benayad, A.; Guetaz, L.; Artero, V.; Fontecave, M. Cu/Cu2O electrodes and CO2 reduction to formic acid: Effects of organic additives on surface morphology and activity. Chem.—Eur. J. 2016, 22, 14029–14035.

    Article  Google Scholar 

  16. [16]

    Hori, Y. Electrochemical CO2 reduction on metal electrode. In Modern Aspects of Electrochemistry; Vayenas, C. G.; White, R. E.; Gamboa-Aldeco, M. E., Eds.; Springer: New York, 2008.

    Google Scholar 

  17. [17]

    Chen, L.; Guo, S. X.; Li, F. W.; Bentley, C.; Horne, M.; Bond, A. M.; Zhang, J. Electrochemical reduction of CO2 at metal electrodes in a distillable ionic liquid. ChemSusChem 2016, 9, 1271–1278.

    Article  Google Scholar 

  18. [18]

    Lu, Q.; Rosen, J.; Zhou, Y.; Hutchings, G. S.; Kimmel, Y. C.; Chen, J. G.; Jiao, F. A selective and efficient electrocatalyst for carbon dioxide reduction. Nat. Common. 2014, 5, 3242.

    Article  Google Scholar 

  19. [19]

    Studt, F.; Behrens, M.; Kunkes, E. L.; Thomas, N.; Zander, S.; Tarasov, A.; Schumann, J.; Frei, E.; Varley, J. B.; Abild-Pedersen, F. et al. The mechanism of CO and CO2 hydrogenation to methanol over Cu-based catalysts. ChemCatChem 2015, 7, 1105–1111.

    Article  Google Scholar 

  20. [20]

    Varela, A. S.; Ju, W.; Reier, T.; Strasser, P. Tuning the catalytic activity and selectivity of Cu for CO2 electroreduction in the presence of halides. ACS Catal. 2016, 6, 2136–2144.

    Article  Google Scholar 

  21. [21]

    Cheng, T.; Xiao, H.; Goddard, W. A. Reaction mechanisms for the electrochemical reduction of CO2 to CO and formate on the Cu(100) surface at 298 K from quantum mechanics free energy calculations with explicit water. J. Am. Chem. Soc. 2016, 138, 13802–13805.

    Article  Google Scholar 

  22. [22]

    Kuhl, K. P.; Cave, E. R.; Abram, D. N.; Jaramillo, T. F. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 2012, 5, 7050–7059.

    Article  Google Scholar 

  23. [23]

    Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Nørskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 2010, 3, 1311–1315.

    Article  Google Scholar 

  24. [24]

    Ren, D.; Ang, B. S.-H.; Yeo, B. S. Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxidederived CuxZn catalysts. ACS Catal. 2016, 6, 8239–8247.

    Article  Google Scholar 

  25. [25]

    Larrazábal, G. O.; Martín, A. J.; Mitchell, S.; Hauert, R.; Pérez-Ramírez, J. Enhanced reduction of CO2 to CO over Cu–In electrocatalysts: Catalyst evolution is the key. ACS Catal. 2016, 6, 6265–6274.

    Article  Google Scholar 

  26. [26]

    Dutta, A.; Rahaman, M.; Luedi, N. C.; Mohos, M.; Broekmann, P. Morphology matters: Tuning the product distribution of CO2 electroreduction on oxide-derived (OD) Cu foam catalysts. ACS Catal. 2016, 6, 3804–3814.

    Article  Google Scholar 

  27. [27]

    Lee, S.; Kim, D.; Lee, J. Electrocatalytic production of C3-C4 compounds by conversion of CO2 on a chloride-induced Bi-phasic Cu2O-Cu catalyst. Angew. Chem., Int. Ed. 2015, 54, 14701–14705.

    Article  Google Scholar 

  28. [28]

    Li, C. W.; Kanan, M. W. CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J. Am. Chem. Soc. 2012, 134, 7231–7234.

    Article  Google Scholar 

  29. [29]

    Gupta, K.; Bersani, M.; Darr, J. A. Highly efficient electroreduction of CO2 to formic acid by nano-copper. J. Mater. Chem. A 2016, 4, 13786–13794.

    Article  Google Scholar 

  30. [30]

    Matsubara, Y.; Grills, D. C.; Kuwahara, Y. Thermodynamic aspects of electrocatalytic CO2 reduction in acetonitrile and with an ionic liquid as solvent or electrolyte. ACS Catal. 2015, 5, 6440–6452.

    Article  Google Scholar 

  31. [31]

    Oh, Y.; Vrubel, H.; Guidoux, S.; Hu, X. L. Electrochemical reduction of CO2 in organic solvents catalyzed by MoO2. Chem. Comm. 2014, 50, 3878–3881.

    Article  Google Scholar 

  32. [32]

    Qiao, X. X.; Li, Q. Q.; Schaugaard, R. N.; Noffke, B. W.; Liu, Y. J.; Li, D. P.; Liu, L.; Raghavachari, K.; Li, L. S. Well-defined nanographene–rhenium complex as an efficient electrocatalyst and photocatalyst for selective CO2 reduction. J. Am. Chem. Soc. 2017, 139, 3934–3937.

    Article  Google Scholar 

  33. [33]

    MacFarlane, D. R.; Forsyth, M.; Howlett, P. C.; Kar, M.; Passerini, S.; Pringle, J. M.; Ohno, H.; Watanabe, M.; Yan, F.; Zheng, W. J. et al. Ionic liquids and their solid-state analogues as materials for energy generation and storage. Nat. Rev. Mater. 2016, 1, 15005.

    Article  Google Scholar 

  34. [34]

    Alvarez-Guerra, M.; Albo, J.; Alvarez-Guerra, E.; Irabien, A. Ionic liquids in the electrochemical valorisation of CO2. Energy Environ. Sci. 2015, 8, 2574–2599.

    Article  Google Scholar 

  35. [35]

    Huan, T. N.; Andreiadis, E. S.; Heidkamp, J.; Simon, P.; Derat, E.; Cobo, S.; Royal, G.; Bergmann, A.; Strasser, P.; Dau, H. et al. From molecular copper complexes to composite electrocatalytic materials for selective reduction of CO2 to formic acid. J. Mater. Chem. A 2015, 3, 3901–3907.

    Article  Google Scholar 

  36. [36]

    Liu, Y. L.; Li, H. X.; Tu, D. Y.; Ji, Z. Y.; Wang, C. S.; Tang, Q. X.; Liu, M.; Hu, W. P.; Liu, Y. Q.; Zhu, D. B. Controlling the growth of single crystalline nanoribbons of copper tetracyanoquinodimethane for the fabrication of devices and device arrays. J. Am. Chem. Soc. 2006, 128, 12917–12922.

    Article  Google Scholar 

  37. [37]

    Heintz, R. A.; Zhao, H. H.; Ouyang, X.; Grandinetti, G.; Cowen, J.; Dunbar, K. R. New insight into the nature of Cu(TCNQ): Solution routes to two distinct polymorphs and their relationship to crystalline films that display bistable switching behavior. Inorg. Chem. 1999, 38, 144–156.

    Article  Google Scholar 

  38. [38]

    McDonald-Wharry, J.; Manley-Harris, M.; Pickering, K. Carbonisation of biomass-derived chars and the thermal reduction of a graphene oxide sample studied using Raman spectroscopy. Carbon 2013, 59, 383–405.

    Article  Google Scholar 

  39. [39]

    Wan, L.; Shamsaei, E.; Easton, C. D.; Yu, D. B.; Liang, Y.; Chen, X. F.; Abbasi, Z.; Akbari, A.; Zhang, X. W.; Wang, H. T. ZIF-8 derived nitrogen-doped porous carbon/carbon nanotube composite for high-performance supercapacitor. Carbon 2017, 121, 330–336.

    Article  Google Scholar 

  40. [40]

    Hellgren, N.; Haasch, R. T.; Schmidt, S.; Hultman, L.; Petrov, I. Interpretation of X-ray photoelectron spectra of carbon-nitride thin films: New insights from in situ XPS. Carbon 2016, 108, 242–252.

    Article  Google Scholar 

  41. [41]

    Gammon, W. J.; Kraft, O.; Reilly, A. C.; Holloway, B. C. Experimental comparison of N(1s) X-ray photoelectron spectroscopy binding energies of hard and elastic amorphous carbon nitride films with reference organic compounds. Carbon 2003, 41, 1917–1923.

    Article  Google Scholar 

  42. [42]

    Gennaro, A.; Isse, A. A.; Severin, M.-G.; Vianello, E.; Bhugun, I.; Savéant, J.-M. Mechanism of the electrochemical reduction of carbon dioxide at inert electrodes in media of low proton availability. J. Chem. Soc., Faraday Trans. 1996, 92, 3963–3968.

    Article  Google Scholar 

  43. [43]

    Amatore, C.; Saveant, J. M. Mechanism and kinetic characteristics of the electrochemical reduction of carbon dioxide in media of low proton availability. J. Am. Chem. Soc. 1981, 103, 5021–5023.

    Article  Google Scholar 

  44. [44]

    Zhao, S.-F.; Horne, M.; Bond, A. M.; Zhang, J. Is the imidazolium cation a unique promoter for electrocatalytic reduction of carbon dioxide? J. Phys. Chem. C 2016, 120, 23989–24001.

    Article  Google Scholar 

  45. [45]

    Li, Q.; Zhu, W. L.; Fu, J. J.; Zhang, H. Y.; Wu, G.; Sun, S. H. Controlled assembly of Cu nanoparticles on pyridinic-N rich graphene for electrochemical reduction of CO2 to ethylene. Nano Energy 2016, 24, 1–9.

    Article  Google Scholar 

  46. [46]

    Nossol, E.; Nossol, A. B. S.; Guo, S.-X.; Zhang, J.; Fang, X.-Y.; Zarbin, A. J. G.; Bond, A. M. Synthesis, characterization and morphology of reduced graphene oxide-metal-TCNQ nanocomposites. J. Mater. Chem. C 2014, 2, 870–878.

    Article  Google Scholar 

  47. [47]

    Vasylets, G. Y.; Starodub, V. A.; Barszcz, B.; Graja, A.; Medviediev, V. V.; Shishkin, O. V.; Bukrinev, A. S. Structure and spectral properties of TCNQ salts with Zn(II) and Ni(II) 2,2′-bipyridine complexes. Synth. Met. 2014, 191, 89–98.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge technical assistance from Mr. Philip Holt for the GC measurements and Dr. Peter Nichols for the NMR measurements. X. L. Z. acknowledges Monash University for provision of postgraduate scholarship support. The authors acknowledge the use of facilities in the Monash Centre for Electron Microscopy.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jie Zhang.

Electronic supplementary material

12274_2017_1936_MOESM1_ESM.pdf

Ultra-small Cu nanoparticles embedded in N-doped carbon arrays for electrocatalytic CO2 reduction reaction in dimethylformamide

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zhang, Y., Li, F. et al. Ultra-small Cu nanoparticles embedded in N-doped carbon arrays for electrocatalytic CO2 reduction reaction in dimethylformamide. Nano Res. 11, 3678–3690 (2018). https://doi.org/10.1007/s12274-017-1936-1

Download citation

Keywords

  • copper tetracyanoquinodimethane (CuTCNQ)
  • copper
  • carbon arrays
  • CO2 reduction
  • electrocatalysis