Skip to main content

A sustainable aqueous Zn-I2 battery


Rechargeable metal-iodine batteries are an emerging attractive electrochemical energy storage technology that combines metallic anodes with halogen cathodes. Such batteries using aqueous electrolytes represent a viable solution for the safety and cost issues associated with organic electrolytes. A hybrid-electrolyte battery architecture has been adopted in a lithium-iodine battery using a solid ceramic membrane that protects the metallic anode from contacting the aqueous electrolyte. Here we demonstrate an eco-friendly, low-cost zinc-iodine battery with an aqueous electrolyte, wherein active I2 is confined in a nanoporous carbon cloth substrate. The electrochemical reaction is confined in the nanopores as a single conversion reaction, thus avoiding the production of I3 intermediates. The cathode architecture fully utilizes the active I2, showing a capacity of 255 mAh·g−1 and low capacity cycling fading. The battery provides an energy density of ∼ 151 Wh·kg−1 and exhibits an ultrastable cycle life of more than 1,500 cycles.

This is a preview of subscription content, access via your institution.


  1. [1]

    Dunn, B.; Kamath, H.; Tarascon, J.-M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

    Article  Google Scholar 

  2. [2]

    Sun, Y. M.; Liu, N.; Cui, Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nature Energy 2016, 1, 16071.

    Article  Google Scholar 

  3. [3]

    Feng, N. N.; He, P.; Zhou, H. S. Critical challenges in rechargeable aprotic Li–O2 batteries. Adv. Energy Mater. 2016, 6, 1502303.

    Article  Google Scholar 

  4. [4]

    Hu, Z.; Liu, Q. N.; Chou, S.-L.; Dou, S.-X. Advances and challenges in metal sulfides/selenides for next-generation rechargeable sodium-ion batteries. Adv. Mater. 2017. DOI: 10.1002/adma.201700606.

    Google Scholar 

  5. [5]

    Park, M.; Ryu, J.; Wang, W.; Cho, J. Material design and engineering of next-generation flow-battery technologies. Nat. Rev. Mater. 2016, 2, 16080.

    Article  Google Scholar 

  6. [6]

    Zhao, Y.; Ding, Y.; Li, Y. T.; Peng, L. L.; Byon, H. R.; Goodenough, J. B.; Yu, G. H. A chemistry and material perspective on lithium redox flow batteries towards highdensity electrical energy storage. Chem. Soc. Rev. 2015, 44, 7968–7996.

    Article  Google Scholar 

  7. [7]

    Broadhead, J. A new lithium-non-lithium non-aqueous secondary battery. In Eighth International Power Sources Symposium, Internat. Power Sources Symposium Committee, Croydon, Surrey, UK, 1972; pp 287–298.

    Google Scholar 

  8. [8]

    Wang, Y. L.; Sun, Q. L.; Zhao, Q. Q.; Cao, J. S.; Ye, S. H. Rechargeable lithium/iodine battery with superior high-rate capability by using iodine-carbon composite as cathode. Energy Environ. Sci. 2011, 4, 3947–3950.

    Article  Google Scholar 

  9. [9]

    Zhao, Q.; Lu, Y. Y.; Zhu, Z. Q.; Tao, Z. L.; Chen, J. Rechargeable lithium-iodine batteries with iodine/nanoporous carbon cathode. Nano Lett. 2015, 15, 5982–5987.

    Article  Google Scholar 

  10. [10]

    Gong, D. C.; Wang, B.; Zhu, J. Y.; Podila, R.; Rao, A. M.; Yu, X. Z.; Xu, Z.; Lu, B. N. An iodine quantum dots based rechargeable sodium-iodine battery. Adv. Energy Mater. 2017, 7, 1601885.

    Article  Google Scholar 

  11. [11]

    Tian, H. J.; Gao, T.; Li, X. G.; Wang, X. W.; Luo, C.; Fan, X. L.; Yang, C. Y.; Suo, L. M.; Ma, Z. H.; Han, W. Q. et al. High power rechargeable magnesium/iodine battery chemistry. Nat. Commun. 2017, 8, 14083.

    Article  Google Scholar 

  12. [12]

    Tian, H. J.; Zhang, S. L.; Meng, Z.; He, W.; Han, W.-Q. Rechargeable aluminum/iodine battery redox chemistry in ionic liquid electrolyte. ACS Energy Lett. 2017, 2, 1170–1176.

    Article  Google Scholar 

  13. [13]

    Zhao, Y.; Wang, L. N.; Byon, H. R. High-performance rechargeable lithium-iodine batteries using triiodide/iodide redox couples in an aqueous cathode. Nat. Commun. 2013, 4, 1896.

    Article  Google Scholar 

  14. [14]

    Zhao, Y.; Byon, H. R. High-performance lithium-iodine flow battery. Adv. Energy Mater. 2013, 3, 1630–1635.

    Article  Google Scholar 

  15. [15]

    Yamamoto, T.; Hishinuma, M.; Yamamoto, A. Zn|ZnI2| iodine secondary battery using iodine-nylon-6 adduct as positive electrode, and its charge-discharge performance. Inorg. Chim. Acta 1984, 86, L47–L49.

    Article  Google Scholar 

  16. [16]

    Li, B.; Nie, Z. M.; Vijayakumar, M.; Li, G. S.; Liu, J.; Sprenkle, V.; Wang, W. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery. Nat. Commun. 2015, 6, 6303.

    Article  Google Scholar 

  17. [17]

    Lee, J.; Srimuk, P.; Fleischmann, S.; Ridder, A.; Zeiger, M.; Presser, V. Nanoconfinement of redox reactions enables rapid zinc iodide energy storage with high efficiency. J. Mater. Chem. A 2017, 5, 12520–12527.

    Article  Google Scholar 

  18. [18]

    Puri, B. R.; Bansal, R. C. Iodine adsorption method for measuring surface area of carbon blacks. Carbon 1965, 3, 227–230.

    Article  Google Scholar 

  19. [19]

    Moser, J. R. Solid state lithium-iodine primary battery. U.S. Patent 3,660,163, May 2, 1972.

    Google Scholar 

  20. [20]

    See, K. A.; Gerbec, J. A.; Jun, Y.-S.; Wudl, F.; Stucky, G. D.; Seshadri, R. A high capacity calcium primary cell based on the Ca–S system. Adv. Energy Mater. 2013, 3, 1056–1061.

    Article  Google Scholar 

  21. [21]

    Kiefer, W.; Bernstein, H. J. The UV-laser excited resonance Raman spectrum of the I3 ion. Chem. Phys. Lett. 1972, 16, 5–9.

    Article  Google Scholar 

  22. [22]

    Pang, Q.; Liang, X.; Kwok, C. Y.; Nazar, L. F. Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 2016, 1, 16132.

    Article  Google Scholar 

  23. [23]

    Aurbach, D.; Pollak, E.; Elazari, R.; Salitra, G.; Kelley, C. S.; Affinito, J. On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries. J. Electrochem. Soc. 2009, 156, A694–A702.

    Article  Google Scholar 

  24. [24]

    Xu, J. T.; Ma, J. M.; Fan, Q. H.; Guo, S. J.; Dou, S. X. Recent progress in the design of advanced cathode materials and battery models for high-performance lithium-X (X = O2, S, Se, Te, I2, Br2) batteries. Adv. Mater. 2017, 29, 1606454.

    Article  Google Scholar 

  25. [25]

    Reddy, T. B. Linden’s Handbook of Batteries; 4th ed. The McGraw-Hill Companies, Inc.: New York, 2010; pp15.10–15.11.

    Google Scholar 

  26. [26]

    Dong, X. L.; Chen, L.; Su, X. L.; Wang, Y. G.; Xia, Y. Y. Flexible aqueous lithium-ion battery with high safety and large volumetric energy density. Angew. Chem., Int. Ed. 2016, 55, 7474–7477.

    Article  Google Scholar 

  27. [27]

    Suo, L. M.; Borodin, O.; Sun, W.; Fan, X. L.; Yang, C. Y.; Wang, F.; Gao, T.; Ma, Z. H.; Schroeder, M.; von Cresce, A. et al. Advanced high-voltage aqueous lithium-ion battery enabled by “water-in-Bisalt” electrolyte. Angew. Chem., Int. Ed. 2016, 55, 7136–7141.

    Article  Google Scholar 

  28. [28]

    Wang, F.; Suo, L. M.; Liang, Y. J.; Yang, C. Y.; Han, F. D.; Gao, T.; Sun, W.; Wang, C. S. Spinel LiNi0.5Mn1.5O4 cathode for high-energy aqueous lithium-ion batteries. Adv. Energy Mater. 2017, 7, 1600922.

    Article  Google Scholar 

Download references


This work was financially supported by the National Natural Science Foundation of China (Nos. 21171128 and 21603162), Tianjin Sci. & Tech. Program (No. 17JCYBJC21500), and the Fundamental Research Funds of Tianjin University of Technology.

Author information



Corresponding authors

Correspondence to Xizheng Liu or Zhihao Yuan.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bai, C., Cai, F., Wang, L. et al. A sustainable aqueous Zn-I2 battery. Nano Res. 11, 3548–3554 (2018).

Download citation


  • aqueous battery
  • nanoporous carbon
  • iodine
  • zinc
  • cycle life