Skip to main content
Log in

Observation of unconventional anomalous Hall effect in epitaxial CrTe thin films

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We have studied the magnetic and electrical transport properties of epitaxial NiAs-type CrTe thin films grown on SrTiO3(111) substrates. Unlike rectangle hysteresis loops obtained from magnetic measurements, we have identified intriguing extra bump/dip features from anomalous Hall experiments on the films with thicknesses less than 12 nm. This observed Hall anomaly is phenomenologically consistent with the occurrence of a topological Hall effect(THE) in chiral magnets with a skyrmion phase. Furthermore, the THE contribution can be tuned by the film thickness, showing the key contribution of asymmetric interfaces in stabilizing Néel-type skyrmions. Our work demonstrates that a CrTe thin film on SrTiO3(111) substrates is a good material candidate for studying real-space topological transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Nagaosa, N.; Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 2013, 8, 899–911.

    Article  Google Scholar 

  2. Rößler, U. K.; Bogdanov, A. N.; Pfleiderer, C. Spontaneous skyrmion ground states in magnetic metals. Nature 2006, 442, 797–801.

    Article  Google Scholar 

  3. Mühlbauer, S.; Binz, B.; Jonietz, F.; Pfleiderer, C.; Rosch, A.; Neubauer, A.; Georgii, R.; Böni, P. Skyrmion lattice in a chiral magnet. Science 2009, 323, 915–919.

    Article  Google Scholar 

  4. Fert, A.; Cros, V.; Sampaio, J. Skyrmions on the track. Nat. Nanotechnol. 2013, 8, 152–156.

    Article  Google Scholar 

  5. Yu, X. Z.; Onose, Y.; Kanazawa, N.; Park, J. H.; Han, J. H.; Matsui, Y.; Nagaosa, N.; Tokura, Y. Real-space observation of a two-dimensional skyrmion crystal. Nature 2010, 465, 901–904.

    Article  Google Scholar 

  6. Heinze, S.; von Bergmann, K.; Menzel, M.; Brede, J.; Kubetzka, A.; Wiesendanger, R.; Bihlmayer, G.; Blügel, S. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat. Phys. 2011, 7, 713–718.

    Article  Google Scholar 

  7. Yasuda, K.; Wakatsuki, R.; Morimoto, T.; Yoshimi, R.; Tsukazaki, A.; Takahashi, K. S.; Ezawa, M.; Kawasaki, M.; Nagaosa, N.; Tokura, Y. Geometric Hall effects in topological insulator heterostructures. Nat. Phys. 2016, 12, 555–559.

    Article  Google Scholar 

  8. Jiang, W. J.; Chen, G.; Liu, K.; Zang, J. D.; Te Velthuis, S. G. E.; Hoffmann, A. Skyrmions in magnetic multilayers. Phys. Rep. 2017, 704, 1–49.

    Article  Google Scholar 

  9. Dzyaloshinskii, I. A thermodynamic theory of “weak” ferroma-gnetism of antiferromagnetics. J. Phys. Chem. Solids 1958, 4, 241–255.

    Article  Google Scholar 

  10. Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 1960, 120, 91–98.

    Article  Google Scholar 

  11. Neubauer, A.; Pfleiderer, C.; Binz, B.; Rosch, A.; Ritz, R.; Niklowitz, P. G.; Böni, P. Topological Hall effect in the A phase of MnSi. Phys. Rev. Lett. 2009, 102, 186602.

    Article  Google Scholar 

  12. Lee, M.; Kang, W.; Onose, Y.; Tokura, Y.; Ong, N. P. Unusual Hall effect anomaly in MnSi under pressure. Phys. Rev. Lett. 2009, 102, 186601.

    Article  Google Scholar 

  13. Li, Y. F.; Kanazawa, N.; Yu, X. Z.; Tsukazaki, A.; Kawasaki, M.; Ichikawa, M.; Jin, X. F.; Kagawa, F.; Tokura, Y. Robust formation of skyrmions and topological Hall effect anomaly in epitaxial thin films of MnSi. Phys. Rev. Lett. 2013, 110, 117202.

    Article  Google Scholar 

  14. Uchida, M.; Nagaosa, N.; He, J. P.; Kaneko, Y.; Iguchi, S.; Matsui, Y.; Tokura, Y. Topological spin textures in the helimagnet FeGe. Phys. Rev. B 2008, 77, 184402.

    Article  Google Scholar 

  15. Yu, X. Z.; Kanazawa, N.; Onose, Y.; Kimoto, K.; Zhang, W. Z.; Ishiwata, S.; Matsui, Y.; Tokura, Y. Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. Nat. Mater. 2011, 10, 106–109.

    Article  Google Scholar 

  16. Dupé, B.; Hoffmann, M.; Paillard, C.; Heinze, S. Tailoring magnetic skyrmions in ultra-thin transition metal films. Nat. Commun. 2014, 5, 4030.

    Article  Google Scholar 

  17. Romming, N.; Hanneken, C.; Menzel, M.; Bickel, J. E.; Wolter, B.; Bergmann, K. V.; Kubetzka, A.; Wiesendanger, R. Writing and deleting single magnetic skyrmions. Science 2013, 341, 636–639.

    Article  Google Scholar 

  18. Matsuno, J.; Ogawa, N.; Yasuda, K.; Kagawa, F.; Koshibae, W.; Nagaosa, N.; Tokura, Y.; Kawasaki, M. Interface-driven topological Hall effect in SrRuO3-SrIrO3 bilayer. Sci. Adv. 2016, 2, e1600304.

    Article  Google Scholar 

  19. Nagaosa, N.; Sinova, J.; Onoda, S.; MacDonald, A. H.; Ong, N. P. Anomalous hall effect. Rev. Mod. Phys. 2010, 82, 1539–1592.

    Article  Google Scholar 

  20. Bogdanov, A. N.; Rößler, U. K. Chiral symmetry breaking in magnetic thin films and multilayers. Phys. Rev. Lett. 2001, 87, 037203.

    Article  Google Scholar 

  21. Bode, M.; Heide, M.; Von Bergmann, K.; Ferriani, P.; Heinze, S.; Bihlmayer, G.; Kubetzka, A.; Pietzsch, O.; Blügel, S.; Wiesendanger, R. Chiral magnetic order at surfaces driven by inversion asymmetry. Nature 2007, 447, 190–193.

    Article  Google Scholar 

  22. Cho, J.; Kim, N. H.; Lee, S.; Kim, J. S.; Lavrijsen, R.; Solignac, A.; Yin, Y. X.; Han, D. S.; Van Hoof, N. J.; Swagten, H. J. et al. Thickness dependence of the interfacial Dzyaloshinskii-Moriya interaction in inversion symmetry broken systems. Nat. Commun. 2015, 6, 7635.

    Article  Google Scholar 

  23. Chen, G.; Ma, T. P.; N’Diaye, A. T.; Kwon, H.; Won, C.; Wu, Y. Z.; Schmid, A. K. Tailoring the chirality of magnetic domain walls by interface engineering. Nat. Commun. 2013, 4, 2671.

    Article  Google Scholar 

  24. Yu, G. Q.; Upadhyaya, P.; Shao, Q. M.; Wu, H.; Yin, G.; Li, X.; He, C. L.; Jiang, W. J.; Han, X. F.; Amiri, P. K. et al. Room- temperature skyrmion shift device for memory application. Nano Lett. 2017, 17, 261–268.

    Article  Google Scholar 

  25. Dijkstra, J.; Weitering, H. H.; Van Bruggen, C. F.; Haas, C.; De Groot, R. A. Band-structure calculations, and magnetic and transport properties of ferromagnetic chromium tellurides (CrTe, Cr3Te4, Cr2Te3). J. Phys.: Condens. Matter 1989, 1, 9141–9161.

    Google Scholar 

  26. Shimada, K.; Saitoh, T.; Namatame, H.; Fujimori, A. Photoemission study of itinerant ferromagnet Cr1−δTe. Phys. Rev. B 1996, 53, 7673–7683.

    Article  Google Scholar 

  27. Ohsawa, A.; Yamaguchi, Y.; Kazama, N.; Yamauchi, H.; Watanabe, H. Magnetic anisotropy of Cr1−xTe with x=0.077. J. Phys. Soc. Jpn. 1972, 33, 1303–1307.

    Article  Google Scholar 

  28. Hirone, T.; Chiba, S. On the magnetic anisotropy of single crystal of chromium telluride. J. Phys. Soc. Jpn. 1960, 15, 1991–1994.

    Article  Google Scholar 

  29. Polesya, S.; Mankovsky, S.; Benea, D.; Ebert, H.; Bensch, W. Finite-temperature magnetism of CrTe and CrSe. J. Phys.: Condens. Matter 2010, 22, 156002.

    Google Scholar 

  30. Keskin, V.; Aktaş, B.; Schmalhorst, J.; Reiss, G.; Zhang, H.; Weischenberg, J.; Mokrousov, Y. Temperature and Co thickness dependent sign change of the anomalous Hall effect in Co/Pd multilayers: An experimental and theoretical study. Appl. Phys. Lett. 2013, 102, 022416.

    Article  Google Scholar 

  31. Winer, G.; Segal, A.; Karpovski, M.; Shelukhin, V.; Gerber, A. Probing Co/Pd interfacial alloying by the extraordinary Hall effect. J. Appl. Phys. 2015, 118, 173901.

    Article  Google Scholar 

  32. Lee, W. L.; Watauchi, S.; Miller, V. L.; Cava, R. J.; Ong, N. P. Dissipationless anomalous Hall current in the ferromagnetic spinel CuCr2Se4−xBrx. Science 2004, 303, 1647–1649.

    Article  Google Scholar 

  33. Sampaio, J.; Cros, V.; Rohart, S.; Thiaville, A.; Fert, A. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nat. Nanotechnol. 2013, 8, 839–844.

    Article  Google Scholar 

  34. Jiang, W. J.; Upadhyaya, P.; Zhang, W.; Yu, G. Q.; Jungfleisch, M. B.; Fradin, F. Y.; Pearson, J. E.; Tserkovnyak, Y.; Wang, K. L.; Heinonen, O. et al. Blowing magnetic skyrmion bubbles. Science 2015, 349, 283–286.

    Article  Google Scholar 

  35. Fert, A.; Reyren, N.; Cros, V. Magnetic skyrmions: Advances in physics and potential applications. Nat. Rev. Mater. 2017, 2, 17031.

    Article  Google Scholar 

  36. Wiesendanger, R. Nanoscale magnetic skyrmions in metallic films and multilayers: A new twist for spintronics. Nat. Rev. Mater. 2016, 1, 16044.

    Article  Google Scholar 

Download references

Acknowledgements

Work performed at Tsinghua was supported by the National Natural Science Foundation of China (Nos. 51561145005 and 11427903), National Key R&D Program of China (Nos. 2017YFA0206200 and 2016YFA0302300), the 1000-Youth talent program of China, the State Key Laboratory of Low-Dimensional Quantum Physics, and the Beijing Advanced Innovation Center for Future Chip (ICFC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wanjun Jiang or Qikun Xue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, D., Zhang, L., Malik, I.A. et al. Observation of unconventional anomalous Hall effect in epitaxial CrTe thin films. Nano Res. 11, 3116–3121 (2018). https://doi.org/10.1007/s12274-017-1913-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1913-8

Keywords

Navigation