In situ atomic-scale observation of monolayer graphene growth from SiC

Abstract

Because of its high compatibility with conventional microfabrication processing technology, epitaxial graphene (EG) grown on SiC shows exceptional promise for graphene-based electronics. However, to date, a detailed understanding of the transformation from three-layer SiC to monolayer graphene is still lacking. Here, we demonstrate the direct atomic-scale observation of EG growth on a SiC (11̅00) surface at 1,000 °C by in situ transmission electron microscopy in combination with ab initio molecular dynamics (AIMD) simulations. Our detailed analysis of the growth dynamics of monolayer graphene reveals that three SiC (11̅00) layers decompose successively to form one graphene layer. Sublimation of the first layer causes the formation of carbon clusters containing short chains and hexagonal rings, which can be considered as the nuclei for graphene growth. Decomposition of the second layer results in the appearance of new chains connecting to the as-formed clusters and the formation of a network with large pores. Finally, the carbon atoms released from the third layer lead to the disappearance of the chains and large pores in the network, resulting in a whole graphene layer. Our study presents a clear picture of the epitaxial growth of the monolayer graphene from SiC and provides valuable information forfuture developments in SiC-derived EG technology.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  Google Scholar 

  2. [2]

    Novoselov, K. S.; Fal’ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200.

    Article  Google Scholar 

  3. [3]

    Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. The role of graphene for electrochemical energy storage. Nat. Mater. 2015, 14, 271–279.

    Article  Google Scholar 

  4. [4]

    Berger, C.; Song, Z. M.; Li, T. B.; Li, X. B.; Ogbazghi, A. Y.; Feng, R.; Dai, Z. T.; Marchenkov, A. N.; Conrad, E. H.; First, P. N. et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 2004, 108, 19912–19916.

    Article  Google Scholar 

  5. [5]

    Lin, Y.-M.; Valdes-Garcia, A.; Han, S.-J.; Farmer, D. B.; Meric, I.; Sun, Y. N.; Wu, Y. Q.; Dimitrakopoulos, C.; Grill, A.; Avouris, P. et al. Wafer-scale graphene integrated circuit. Science 2011, 332, 1294–1297.

    Article  Google Scholar 

  6. [6]

    Huang, H.; Chen, W.; Chen, S.; Wee, A. T. S. Bottom-up growth of epitaxial graphene on 6H-SiC(0001). ACS Nano 2008, 2, 2513–2518.

    Article  Google Scholar 

  7. [7]

    Tanaka, S.; Morita, K.; Hibino, H. Anisotropic layer-by-layer growth of graphene on vicinal SiC(0001) surfaces. Phys.Rev. B 2010, 81, 041406.

    Article  Google Scholar 

  8. [8]

    Norimatsu, W.; Kusunoki, M. Transitional structures of the interface between graphene and 6H–SiC (0001). Chem. Phys. Lett. 2009, 468, 52–56.

    Article  Google Scholar 

  9. [9]

    Emtsev, K. V.; Bostwick, A.; Horn, K.; Jobst, J.; Kellogg, G. L.; Ley, L.; McChesney, J. L.; Ohta, T.; Reshanov, S. A.; Rohrl, J. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater. 2009, 8, 203–207.

    Article  Google Scholar 

  10. [10]

    Johansson, L. I.; Watcharinyanon, S.; Zakharov, A. A.; Iakimov, T.; Yakimova, R.; Virojanadara, C. Stacking of adjacent graphene layers grown on C-face SiC. Phys. Rev. B 2011, 84, 125405.

    Article  Google Scholar 

  11. [11]

    Varchon, F.; Mallet, P.; Magaud, L.; Veuillen, J.-Y. Rotational disorder in few-layer graphene films on 6H-SiC(000ī): A scan-ning tunneling microscopy study. Phys. Rev. B 2008, 77, 165415.

    Article  Google Scholar 

  12. [12]

    Weng, X. J.; Robinson, J. A.; Trumbull, K.; Cavalero, R.; Fanton, M. A.; Snyder, D. Epitaxial graphene on SiC(000ī): Stacking order and interfacial structure. Appl. Phys. Lett. 2012, 100, 031904.

    Article  Google Scholar 

  13. [13]

    Borysiuk, J.; Sołtys, J.; Piechota, J. Stacking sequence dependence of graphene layers on SiC (000ī)—Experimental and theoretical investigation. J. Appl. Phys. 2011, 109, 093523.

    Article  Google Scholar 

  14. [14]

    de Heer, W. A.; Berger, C.; Ruan, M.; Sprinkle, M.; Li, X.; Hu, Y.; Zhang, B.; Hankinson, J.; Conrad, E. Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide. Proc. Natl. Acad. Sci. USA 2011, 108, 16900–16905.

    Article  Google Scholar 

  15. [15]

    Tromp, R. M.; Hannon, J. B. Thermodynamics and kinetics of graphene growth on SiC(0001). Phys. Rev. Lett. 2009, 102, 106104.

    Article  Google Scholar 

  16. [16]

    Forbeaux, I.; Themlin, J. M.; Debever, J. M. Heteroepitaxial graphite on 6H-SiC(0001): Interface formation through conduction-band electronic structure. Phys. Rev. B 1998, 58, 16396–16406.

    Article  Google Scholar 

  17. [17]

    Hass, J.; Feng, R.; Li, T.; Li, X.; Zong, Z.; de Heer, W. A.; First, P. N.; Conrad, E. H.; Jeffrey, C. A.; Berger, C. Highly ordered graphene for two dimensional electronics. Appl. Phys. Lett. 2006, 89, 143106.

    Article  Google Scholar 

  18. [18]

    Kumar, B.; Baraket, M.; Paillet, M.; Huntzinger, J. R.; Tiberj, A.; Jansen, A. G. M.; Vila, L.; Cubuku, M.; Vergnaud, C.; Jamet, M. et al. Growth protocols and characterization of epitaxial graphene on SiC elaborated in a graphite enclosure. Phys. E: Low-dimens. Syst. Nanostr. 2016, 75, 7–14.

    Article  Google Scholar 

  19. [19]

    Robinson, J. A.; Wetherington, M.; Tedesco, J. L.; Campbell, P. M.; Weng, X.; Stitt, J.; Fanton, M. A.; Frantz, E.; Snyder, D.; VanMil, B. L. et al. Correlating Raman spectral signatures with carrier mobility in epitaxial graphene: A guide to achieving high mobility on the wafer scale. Nano Lett. 2009, 9, 2873–2876.

    Article  Google Scholar 

  20. [20]

    Lin, Y.-M.; Dimitrakopoulos, C.; Jenkins, K. A.; Farmer, D. B.; Chiu, H.-Y.; Grill, A.; Avouris, P. 100-GHz transistors from wafer-scale epitaxial graphene. Science 2010, 327, 662.

    Article  Google Scholar 

  21. [21]

    Luxmi; Srivastava, N.; He, G. W.; Feenstra, R. M.; Fisher, P. J. Comparison of graphene formation on C-face and Si-face SiC {0001} surfaces. Phys. Rev. B 2010, 82, 235406.

    Article  Google Scholar 

  22. [22]

    Hass, J.; Varchon, F.; Millán-Otoya, J. E.; Sprinkle, M.; Sharma, N.; de Heer, W. A.; Berger, C.; First, P. N.; Magaud, L.; Conrad, E. H. Why multilayer graphene on 4H-SiC(000ī) behaves like a single sheet of graphene. Phys. Rev. Lett. 2008, 100, 125504.

    Article  Google Scholar 

  23. [23]

    Hicks, J.; Shepperd, K.; Wang, F.; Conrad, E. H. The structure of graphene grown on the SiC (000ī) surface. J. Phys. D: Appl. Phys. 2012, 45, 154002.

    Article  Google Scholar 

  24. [24]

    Kageshima, H.; Hibino, H.; Tanabe, S. The physics of epitaxial graphene on SiC(0001). J. Phys.: Condens. Matter 2012, 24, 314215.

    Google Scholar 

  25. [25]

    Bolen, M. L.; Harrison, S. E.; Biedermann, L. B.; Capano, M. A. Graphene formation mechanisms on 4H-SiC(0001). Phys. Rev. B 2009, 80, 115433.

    Article  Google Scholar 

  26. [26]

    Norimatsu, W.; Kusunoki, M. Formation process of graphene on SiC (0001). Phys. E: Low-dimens. Syst. Nanostr. 2010, 42, 691–694.

    Article  Google Scholar 

  27. [27]

    Robinson, J.; Weng, X. J.; Trumbull, K.; Cavalero, R.; Wetherington, M.; Frantz, E.; LaBella, M.; Hughes, Z.; Fanton, M.; Snyder, D. Nucleation of epitaxial graphene on SiC(0001). ACS Nano 2009, 4, 153–158.

    Article  Google Scholar 

  28. [28]

    Hupalo, M.; Conrad, E. H.; Tringides, M. C. Growth mechanism for epitaxial graphene on vicinal 6H-SiC(0001) surfaces: A scanning tunneling microscopy study. Phys. Rev. B 2009, 80, 041401.

    Article  Google Scholar 

  29. [29]

    Norimatsu, W.; Takada, J.; Kusunoki, M. Formation mechanism of graphene layers on SiC (000ī) in a high-pressure argon atmosphere. Phys. Rev. B 2011, 84, 035424.

    Article  Google Scholar 

  30. [30]

    Camara, N.; Rius, G.; Huntzinger, J.-R.; Tiberj, A.; Magaud, L.; Mestres, N.; Godignon, P.; Camassel, J. Early stage formation of graphene on the C face of 6H-SiC. Appl. Phys. Lett. 2008, 93, 263102.

    Article  Google Scholar 

  31. [31]

    Hite, J. K.; Twigg, M. E.; Tedesco, J. L.; Friedman, A. L.; Myers-Ward, R. L.; Eddy, C. R., Jr; Gaskill, D. K. Epitaxial graphene nucleation on C-face silicon carbide. Nano Lett. 2011, 11, 1190–1194.

    Article  Google Scholar 

  32. [32]

    Hwang, Y. B.; Lee, E.-K.; Choi, H.; Yun, K.-H.; Lee, M.; Chung, Y.-C. Atomic behavior of carbon atoms on a Si removed 3C-SiC (111) surface during the early stage of epitaxial graphene growth. J. Appl. Phys. 2012, 111, 104324.

    Article  Google Scholar 

  33. [33]

    Ryosuke, I.; Takahiro, K.; Yasuyuki, S.; Masato, I.; Yoshihiro, K.; Koichi, K. Molecular dynamics simulation of graphene growth by surface decomposition of 6H-SiC(0001) and (000ī). Jpn. J. Appl. Phys. 2014, 53, 065601.

    Article  Google Scholar 

  34. [34]

    Tang, C.; Meng, L. J.; Xiao, H. P.; Zhong, J. X. Growth of graphene structure on 6H-SiC(0001): Molecular dynamics simulation. J. Appl. Phys. 2008, 103, 063505.

    Article  Google Scholar 

  35. [35]

    Daas, B. K.; Omar, S. U.; Shetu, S.; Daniels, K. M.; Ma, S. Sudarshan, T. S.; Chandrashekhar, M. V. S.; Comparison of epitaxial graphene growth on polar and nonpolar 6H-SiC faces: On the growth of multilayer films. Cryst. Growth Des. 2012, 12, 3379–3387.

    Article  Google Scholar 

  36. [36]

    Low, T.; Perebeinos, V.; Tersoff, J.; Avouris, P. Deformation and scattering in graphene over substrate steps. Phys. Rev. Lett. 2012, 108, 096601.

    Article  Google Scholar 

  37. [37]

    Ostler, M.; Deretzis, I.; Mammadov, S.; Giannazzo, F.; Nicotra, G.; Spinella, C.; Seyller, T.; La Magna, A. Direct growth of quasi-free-standing epitaxial graphene on nonpolar SiC surfaces. Phys. Rev. B 2013, 88, 085408.

    Article  Google Scholar 

  38. [38]

    Lin, J. J.; Guo, L. W.; Jia, Y. P.; Yang, R.; Wu, S.; Huang, J.; Guo, Y.; Li, Z. L.; Zhang, G. Y.; Chen, X. L. Identification of dominant scattering mechanism in epitaxial graphene on SiC. Appl. Phys. Lett. 2014, 104, 183102.

    Article  Google Scholar 

  39. [39]

    Deng, D. H.; Pan, X. L.; Zhang, H.; Fu, Q.; Tan, D. L.; Bao, X. Freestanding graphene by thermal splitting of silicon carbide granules. Adv. Mater. 2010, 22, 2168–2171.

    Article  Google Scholar 

  40. [40]

    Muehlhoff, L.; Choyke, W. J.; Bozack, M. J.; Yates, J. T. Comparative electron spectroscopic studies of surface segregation on SiC(0001) and SiC(000ī). J. Appl. Phys. 1986, 60, 2842–2853.

    Article  Google Scholar 

  41. [41]

    Haiss, W. Surface stress of clean and adsorbate-covered solids. Rep. Prog. Phys. 2001, 64, 591–648.

    Article  Google Scholar 

  42. [42]

    Rauls, E.; Hajnal, Z.; Deák, P.; Frauenheim, T. Theoretical study of the nonpolar surfaces and their oxygen passivation in 4H- and 6H-SiC. Phys. Rev. B 2001, 64, 245323.

    Article  Google Scholar 

  43. [43]

    Seyller, T.; Graupner, R.; Sieber, N.; Emtsev, K. V.; Ley, L.; Tadich, A.; Riley, J. D.; Leckey, R. C. G. Hydrogen terminated 4H-SiC (1ī00) and (112¯0) surfaces studied by synchrotron x-ray photoelectron spectroscopy. Phys. Rev. B 2005, 71, 245333.

    Article  Google Scholar 

  44. [44]

    Ming, F.; Zangwill, A. Model for the epitaxial growth of graphene on 6H-SiC(0001). Phys. Rev. B 2011, 84, 115459.

    Article  Google Scholar 

  45. [45]

    Florian, B. Irradiation effects in carbon nanostructures. Rep. Prog. Phys. 1999, 62, 1181–1221.

    Article  Google Scholar 

  46. [46]

    Kusunoki, M.; Suzuki, T.; Hirayama, T.; Shibata, N.; Kaneko, K. A formation mechanism of carbon nanotube films on SiC(0001). Appl. Phys. Lett. 2000, 77, 531–533.

    Article  Google Scholar 

  47. [47]

    Pauling, L. The Nature of the Chemical Bond; Cornell University Press: Ithaca, NY, 1960.

    Google Scholar 

  48. [48]

    Bernstein, H. J. Bond energies in hydrocarbons. Trans. Faraday Soc. 1962, 58, 2285–2306.

    Article  Google Scholar 

  49. [49]

    Walsh, R. Bond dissociation energies in organosilicon compounds. In: Silicon in Organic, Organometallic and Polymer Chemistry. M. A. Brook, Ed.; Wiley: New York, 1998.

    Google Scholar 

  50. [50]

    Mélinon, P.; Masenelli, B.; Tournus, F.; Perez, A. Playing with carbon and silicon at the nanoscale. Nat. Mater. 2007, 6, 479–490.

    Article  Google Scholar 

  51. [51]

    Gao, J. F.; Yip, J.; Zhao, J. J.; Yakobson, B. I.; Ding, F. Graphene nucleation on transition metal surface: Structure transformation and role of the metal step edge. J. Am. Chem. Soc. 2011, 133, 5009–5015.

    Article  Google Scholar 

  52. [52]

    Li, J. D.; Croiset, E.; Ricardez-Sandoval, L. Carbon clusters on the Ni (111) surface: A density functional theory study. Phys. Chem. Chem. Phys. 2014, 16, 2954–2961.

    Article  Google Scholar 

  53. [53]

    Yuan, Q. H.; Ding, F. Formation of carbyne and graphyne on transition metal surfaces. Nanoscale 2014, 6, 12727–12731.

    Article  Google Scholar 

  54. [54]

    Zhang, L. Y.; Zhao, X. J.; Xue, X. L.; Shi, J. L.; Li, C.; Ren, X. Y.; Niu, C. Y.; Jia, Y.; Guo, Z. X.; Li, S. F. Sub-surface alloying largely influences graphene nucleation and growth over transition metal substrates. Phys. Chem. Chem. Phys. 2015, 17, 30270–30278.

    Article  Google Scholar 

  55. [55]

    Van Wesep, R. G.; Chen, H.; Zhu, W. G.; Zhang, Z. Y. Communication: Stable carbon nanoarches in the initial stages of epitaxial growth of graphene on Cu(111). J. Chem. Phys. 2011, 134, 171105.

    Article  Google Scholar 

  56. [56]

    Zhuang, J. N.; Zhao, R. Q.; Dong, J. C.; Yan, T. Y.; Ding, F. Evolution of domains and grain boundaries in graphene: A kinetic Monte Carlo simulation. Phys. Chem. Chem. Phys. 2016, 18, 2932–2939.

    Article  Google Scholar 

  57. [57]

    Ding, F.; Yakobson, B. I. Energy-driven kinetic Monte Carlo method and its application in fullerene coalescence. J. Phys. Chem. Lett. 2014, 5, 2922–2926.

    Article  Google Scholar 

  58. [58]

    Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996, 6, 15–50.

    Article  Google Scholar 

  59. [59]

    Perdew, J. P.; Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 1981, 23, 5048–5079.

    Article  Google Scholar 

  60. [60]

    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  61. [61]

    Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511–519.

    Article  Google Scholar 

  62. [62]

    Donald, W. B.; Olga, A. S.; Judith, A. H.; Steven, J. S.; Boris, N.; Susan, B. S. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys.: Condens. Matter 2002, 14, 783–802.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51420105003, 11525415, 11327901, 61274114, 11674052, and 11604047) and the Fundamental Research Funds for the Central Universities (Nos. 2242016K41039, MTEC-2015M03, and NJ20150026) and the Natural Science Foundation of Jiangsu Province (No. BK20160694). W. Z. and F. D. acknowledge the support of Institute for Basic Science, Republic of Korea (No. IBS-R019-D1). X. W. would like to acknowledge support from the Projects of Science and Technology Commission of Shanghai Municipality (No. 14DZ2260800).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Feng Ding or Litao Sun.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, K., Zhao, W., Wu, X. et al. In situ atomic-scale observation of monolayer graphene growth from SiC. Nano Res. 11, 2809–2820 (2018). https://doi.org/10.1007/s12274-017-1911-x

Download citation

Keywords

  • graphene
  • epitaxial growth
  • in situ
  • transmission electron microscopy