Skip to main content

Design and applications of lattice plasmon resonances

Abstract

With their unique optical properties associated with the excitation of surface plasmons, metal nanoparticles (NPs) have been used in optical sensors and devices. The organization of these NPs into arrays can induce coupling effects to engineer new optical responses. In particular, lattice plasmon resonances (LPRs), which arise from coherent interactions and coupling among NPs in periodic arrays, have shown great promise for realizing narrow linewidths, angle-dependent dispersions, and high wavelength tunability of optical spectra. By engineering the materials, shapes, sizes, and spatial arrangements of NPs within arrays, one can tune the LPR-based spectral responses and electromagnetic field distributions to deliver a multitude of improvements, including a high figure-of-merit, superior light–matter interaction, and multiband operation. In this review, we discuss recent progress in designing and applying new metal nanostructures for LPR-based applications. We conclude this review with our perspective on the future opportunities and challenges of LPR-based devices.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Willets, K. A.; Van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 2007, 58, 267–297.

    Article  CAS  Google Scholar 

  2. [2]

    Mayer, K. M.; Hafner, J. H. Localized surface plasmon resonance sensors. Chem. Rev. 2011, 111, 3828–3857.

    Article  CAS  Google Scholar 

  3. [3]

    Shiohara, A.; Wang, Y. S.; Liz-Marzán, L. M. Recent approaches toward creation of hot spots for SERS detection. J. Photochem. Photobiol. C: Photochem. Rev. 2014, 21, 2–25.

    Article  CAS  Google Scholar 

  4. [4]

    Shen, S. X.; Meng, L. Y.; Zhang, Y. J.; Han, J. B.; Ma, Z. W.; Hu, S.; He, Y. H.; Li, J. F.; Ren, B.; Shih, T. M. et al. Plasmon-enhanced second-harmonic generation nanorulers with ultrahigh sensitivities. Nano Lett. 2015, 15, 6716–6721.

    Article  CAS  Google Scholar 

  5. [5]

    Liu, Y. M.; Zhang, X. Metamaterials: A new frontier of science and technology. Chem. Soc. Rev. 2011, 40, 2494–2507.

    Article  CAS  Google Scholar 

  6. [6]

    Deng, W.; Xie, F.; Baltar, H. T. M. C. M.; Goldys, E. M. Metal-enhanced fluorescence in the life sciences: Here, now and beyond. Phys. Chem. Chem. Phys. 2013, 15, 15695–15708.

    Article  CAS  Google Scholar 

  7. [7]

    Brolo, A. G. Plasmonics for future biosensors. Nat. Photonics 2012, 6, 709–713.

    Article  CAS  Google Scholar 

  8. [8]

    Wu, X. F.; Zhang, J. S.; Chen, J. J.; Zhao, C. L.; Gong, Q. H. Refractive index sensor based on surface-plasmon interference. Opt. Lett. 2009, 34, 392–394.

    Article  CAS  Google Scholar 

  9. [9]

    Rajeeva, B. B.; Zheng, Y. B. Molecular plasmonics: From molecular-scale measurements and control to applications. In Nanotechnology: Delivering on the Promise Volume 2. H. N. Cheng, L. Doemeny, C. L. Geraci, D. G. Schmidt, Eds.; ACS Publications: Washington, DC, 2016; pp 23–52.

    Chapter  Google Scholar 

  10. [10]

    Rajeeva, B. B.; Menz, R.; Zheng, Y. B. Towards rational design of multifunctional theranostic nanoparticles: What barriers do we need to overcome? Nanomedicine 2014, 9, 1767–1770.

    Article  CAS  Google Scholar 

  11. [11]

    Stewart, M. E.; Anderton, C. R.; Thompson, L. B.; Maria, J.; Gray, S. K.; Rogers, J. A.; Nuzzo, R. G. Nanostructured plasmonic sensors. Chem. Rev. 2008, 108, 494–521.

    Article  CAS  Google Scholar 

  12. [12]

    Unser, S.; Bruzas, I.; He, J.; Sagle, L. Localized surface plasmon resonance biosensing: Current challenges and approaches. Sensors 2015, 15, 15684–15716.

    Article  Google Scholar 

  13. [13]

    Valsecchi, C.; Brolo, A. G. Periodic metallic nanostructures as plasmonic chemical sensors. Langmuir 2013, 29, 5638–5649.

    Article  CAS  Google Scholar 

  14. [14]

    Lin, L. H.; Yi, Y. S. Orthogonal and parallel lattice plasmon resonance in core-shell SiO2/Au nanocylinder arrays. Opt. Express 2015, 23, 130–142.

    Article  CAS  Google Scholar 

  15. [15]

    Xie, L. P.; Yan, X. J.; Du, Y. N. An aptamer based wall-less LSPR array chip for label-free and high throughput detection of biomolecules. Biosens. Bioelectron. 2014, 53, 58–64.

    Article  CAS  Google Scholar 

  16. [16]

    Tokel, O.; Inci, F.; Demirci, U. Advances in plasmonic technologies for point of care applications. Chem. Rev. 2014, 114, 5728–5752.

    Article  CAS  Google Scholar 

  17. [17]

    Zhou, W.; Odom, T. W. Tunable subradiant lattice plasmons by out-of-plane dipolar interactions. Nat. Nanotechnol. 2011, 6, 423–427.

    Article  CAS  Google Scholar 

  18. [18]

    Cotrufo, M.; Osorio, C. I.; Koenderink, A. F. Spin-dependent emission from arrays of planar chiral nanoantennas due to lattice and localized plasmon resonances. ACS Nano 2016, 10, 3389–3397.

    Article  CAS  Google Scholar 

  19. [19]

    Zhou, W.; Hua, Y.; Huntington, M. D.; Odom, T. W. Delocalized lattice plasmon resonances show dispersive quality factors. J. Phys. Chem. Lett. 2012, 3, 1381–1385.

    Article  CAS  Google Scholar 

  20. [20]

    Lassiter, J. B.; Aizpurua, J.; Hernandez, L. I.; Brandl, D. W.; Romero, I.; Lal, S.; Hafner, J. H.; Nordlander, P.; Halas, N. J. Close encounters between two nanoshells. Nano Lett. 2008, 8, 1212–1218.

    Article  CAS  Google Scholar 

  21. [21]

    Rajeeva, B. B.; Hernandez, D. S.; Wang, M. S.; Perillo, E.; Lin, L. H.; Scarabelli, L.; Pingali, B.; Liz-Marzán, L. M.; Dunn, A. K.; Shear, J. B. et al. Regioselective localization and tracking of biomolecules on single gold nanoparticles. Adv. Sci. 2015, 2, 1500232.

    Article  CAS  Google Scholar 

  22. [22]

    Chang, W. S.; Link, S. Enhancing the sensitivity of singleparticle photothermal imaging with thermotropic liquid crystals. J. Phys. Chem. Lett. 2012, 3, 1393–1399.

    Article  CAS  Google Scholar 

  23. [23]

    Wang, G. F.; Sun, W.; Luo, Y.; Fang, N. Resolving rotational motions of nano-objects in engineered environments and live cells with gold nanorods and differential interference contrast microscopy. J. Am. Chem. Soc. 2010, 132, 16417–16422.

    Article  CAS  Google Scholar 

  24. [24]

    Hartland, G. V. Optical studies of dynamics in noble metal nanostructures. Chem. Rev. 2011, 111, 3858–3887.

    Article  CAS  Google Scholar 

  25. [25]

    Hoggard, A.; Wang, L. Y.; Ma, L. L.; Fang, Y.; You, G.; Olson, J.; Liu, Z.; Chang, W. S.; Ajayan, P. M.; Link, S. Using the plasmon linewidth to calculate the time and efficiency of electron transfer between gold nanorods and graphene. ACS Nano 2013, 7, 11209–11217.

    Article  CAS  Google Scholar 

  26. [26]

    Wang, F.; Shen, Y. R. General properties of local plasmons in metal nanostructures. Phys. Rev. Lett. 2006, 97, 206806.

    Article  CAS  Google Scholar 

  27. [27]

    Li, W. B.; Zhang, L.; Zhou, J. H.; Wu, H. K. Well-designed metal nanostructured arrays for label-free plasmonic biosensing. J. Mater. Chem. C 2015, 3, 6479–6492.

    Article  CAS  Google Scholar 

  28. [28]

    Prodan, E.; Radloff, C.; Halas, N. J.; Nordlander, P. A hybridization model for the plasmon response of complex nanostructures. Science 2003, 302, 419–422.

    Article  CAS  Google Scholar 

  29. [29]

    Zou, S. L.; Janel, N.; Schatz, G. C. Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. J. Chem. Phys. 2004, 120, 10871–10875.

    Article  CAS  Google Scholar 

  30. [30]

    Zou, S. L.; Schatz, G. C. Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays. J. Chem. Phys. 2004, 121, 12606–12612.

    Article  CAS  Google Scholar 

  31. [31]

    Tetz, K. A.; Pang, L.; Fainman, Y. High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance. Opt. Lett. 2006, 31, 1528–1530.

    Article  Google Scholar 

  32. [32]

    Markel, V. A. Coupled-dipole approach to scattering of light from a one-dimensional periodic dipole structure. J. Mod. Opt. 1993, 40, 2281–2291.

    Article  CAS  Google Scholar 

  33. [33]

    Zhao, L. L.; Kelly, K. L.; Schatz, G. C. The extinction spectra of silver nanoparticle arrays: Influence of array structure on plasmon resonance wavelength and width. J. Phys. Chem. B 2003, 107, 7343–7350.

    Article  CAS  Google Scholar 

  34. [34]

    Haynes, C. L.; McFarland, A. D.; Zhao, L. L.; Van Duyne, R. P.; Schatz, G. C.; Gunnarsson, L.; Prikulis, J.; Kasemo, B.; Kall, M. Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays. J. Phys. Chem. B 2003, 107, 7337–7342.

    Article  CAS  Google Scholar 

  35. [35]

    Guo, R.; Hakala, T. K.; Törmä, P. Geometry dependence of surface lattice resonances in plasmonic nanoparticle arrays. Phys. Rev. B 2017, 95, 155423.

    Article  Google Scholar 

  36. [36]

    Hicks, E. M.; Zou, S. L.; Schatz, G. C.; Spears, K. G.; Van Duyne, R. P.; Gunnarsson, L.; Rindzevicius, T.; Kasemo, B.; Kall, M. Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography. Nano Lett. 2005, 5, 1065–1070.

    Article  CAS  Google Scholar 

  37. [37]

    Chu, Y. Z.; Schonbrun, E.; Yang, T.; Crozier, K. B. Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays. Appl. Phys. Lett. 2008, 93, 181108.

    Article  CAS  Google Scholar 

  38. [38]

    Lin, L. H.; Zheng, Y. B. Engineering of parallel plasmonicphotonic interactions for on-chip refractive index sensors. Nanoscale 2015, 7, 12205–12214.

    Article  CAS  Google Scholar 

  39. [39]

    Vitrey, A.; Aigouy, L.; Prieto, P.; García-Martín, J. M.; González, M. U. Parallel collective resonances in arrays of gold nanorods. Nano Lett. 2014, 14, 2079–2085.

    Article  CAS  Google Scholar 

  40. [40]

    Offermans, P.; Schaafsma, M. C.; Rodriguez, S. R. K.; Zhang, Y. C.; Crego-Calama, M.; Brongersma, S. H.; Gómez Rivas, J. Universal scalingof the figure of merit of plasmonic sensors. ACS Nano 2011, 5, 5151–5157.

    Article  CAS  Google Scholar 

  41. [41]

    Nikitin, A. G.; Nguyen, T.; Dallaporta, H. Narrow plasmon resonances in diffractive arrays of gold nanoparticles in asymmetric environment: Experimental studies. Appl. Phys. Lett. 2013, 102, 221116.

    Article  CAS  Google Scholar 

  42. [42]

    Lin, L. H.; Zheng, Y. B. Optimizing plasmonic nanoantennas via coordinated multiple coupling. Sci. Rep. 2015, 5, 14788

    Article  CAS  Google Scholar 

  43. [43]

    Miller, M. M.; Lazarides, A. A. Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment. J. Phys. Chem. B 2005, 109, 21556–21565.

    Article  CAS  Google Scholar 

  44. [44]

    Auguié, B.; Bendaña, X. M.; Barnes, W. L.; de Abajo, F. J. G. Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate. Phys. Rev. B 2010, 82, 155447.

    Article  CAS  Google Scholar 

  45. [45]

    Brian, B.; Sepúlveda, B.; Alaverdyan, Y.; Lechuga, L. M.; Käll, M. Sensitivity enhancement of nanoplasmonic sensors in low refractive index substrates. Opt. Express 2009, 17, 2015–2023.

    Article  CAS  Google Scholar 

  46. [46]

    Habteyes, T. G.; Dhuey, S.; Wood, E.; Gargas, D.; Cabrini, S.; Schuck, P. J.; Alivisatos, A. P.; Leone, S. R. Metallic adhesion layer induced plasmon damping and molecular linker as a nondamping alternative. ACS Nano 2012, 6, 5702–5709.

    Article  CAS  Google Scholar 

  47. [47]

    Otte, M. A.; Estévez, M. C.; Carrascosa, L. G.; González-Guerrero, A. B.; Lechuga, L. M.; Sepúlveda, B. Improved biosensing capability with novel suspended nanodisks. J. Phys. Chem. C 2011, 115, 5344–5351.

    Article  CAS  Google Scholar 

  48. [48]

    Martinsson, E.; Otte, M. A.; Shahjamali, M. M.; Sepulveda, B.; Aili, D. Substrate effect on the refractive index sensitivity of silver nanoparticles. J. Phys. Chem. C 2014, 118, 24680–24687.

    Article  CAS  Google Scholar 

  49. [49]

    Dmitriev, A.; Hagglund, C.; Chen, S.; Fredriksson, H.; Pakizeh, T.; Kall, M.; Sutherland, D. S. Enhanced nanoplasmonic optical sensors with reduced substrate effect. Nano Lett. 2008, 8, 3893–3898.

    Article  CAS  Google Scholar 

  50. [50]

    Du, Y. C.; Shi, L. N.; Hong, M. H.; Li, H. L.; Li, D. M.; Liu, M. A surface plasmon resonance biosensor based on gold nanoparticle array. Opt. Commun. 2013, 298–299, 232–236.

    Article  CAS  Google Scholar 

  51. [51]

    Cetin, A. E.; Etezadi, D.; Altug, H. Accessible nearfields by nanoantennas on nanopedestals for ultrasensitive vibrational spectroscopy. Adv. Opt. Mater. 2014, 2, 866–872.

    Article  CAS  Google Scholar 

  52. [52]

    Huck, C.; Toma, A.; Neubrech, F.; Chirumamilla, M.; Vogt, J.; De Angelis, F.; Pucci, A. Gold nanoantennas on a pedestal for plasmonic enhancement in the infrared. ACS Photonics 2015, 2, 497–505.

    Article  CAS  Google Scholar 

  53. [53]

    Auguié, B.; Barnes, W. L. Collective resonances in gold nanoparticle arrays. Phys. Rev. Lett. 2008, 101, 143902.

    Article  CAS  Google Scholar 

  54. [54]

    Thackray, B. D.; Kravets, V. G.; Schedin, F.; Anton, G.; Thomas, P. A.; Grigorenko, A. N. Narrow collective plasmon resonances in nanostructure arrays observed at normal light incidence for simplified sensing in asymmetric air and water environments. ACS Photonics 2014, 1, 1116–1126.

    Article  CAS  Google Scholar 

  55. [55]

    Lin, L. H.; Zheng, Y. B. Multiple plasmonic-photonic couplings in the Au nanobeaker arrays: Enhanced robustness and wavelength tunability. Opt. Lett. 2015, 40, 2060–2063.

    Article  CAS  Google Scholar 

  56. [56]

    Liu, N.; Mesch, M.; Weiss, T.; Hentschel, M.; Giessen, H. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 2010, 10, 2342–2348.

    Article  CAS  Google Scholar 

  57. [57]

    Szunerits, S.; Praig, V. G.; Manesse, M.; Boukherroub, R. Gold island films on indium tin oxide for localized surface plasmon sensing. Nanotechnology 2008, 19, 195712.

    Article  CAS  Google Scholar 

  58. [58]

    Bangalore Rajeeva, B.; Lin, L. H.; Perillo, E. P.; Peng, X. L.; Yu, W. W.; Dunn, A.; Zheng, Y. B. High-resolution bubble printing of quantum dots. ACS Appl. Mater. Interfaces 2017, 9, 16725–16733.

    Article  CAS  Google Scholar 

  59. [59]

    Rajeeva, B. B.; Alabandi, M. A.; Lin, L. H.; Perillo, E. P.; Dunn, A. K.; Zheng, Y. B. Patterning and fluorescence tuning of quantum dots with haptic-interfaced bubble printing. J. Mater. Chem. C 2017, 5, 5693–5699.

    Article  CAS  Google Scholar 

  60. [60]

    Lee, Y. H.; Lee, C. K.; Tan, B. R.; Tan, J. M. R.; Phang, I. Y.; Ling, X. Y. Using the Langmuir-Schaefer technique to fabricate large-area dense SERS-active Au nanoprism monolayer films. Nanoscale 2013, 5, 6404–6412.

    Article  CAS  Google Scholar 

  61. [61]

    Lodewijks, K.; Van Roy, W.; Borghs, G.; Lagae, L.; Van Dorpe, P. Boosting the figure-of-merit of LSPR-based refractive index sensing by phase-sensitive measurements. Nano Lett. 2012, 12, 1655–1659.

    Article  CAS  Google Scholar 

  62. [62]

    Rodriguez, S. R. K.; Abass, A.; Maes, B.; Janssen, O. T. A.; Vecchi, G.; Gómez Rivas, J. Coupling bright and dark plasmonic lattice resonances. Phys. Rev. X 2011, 1, 021019.

    Google Scholar 

  63. [63]

    Shen, Y.; Zhou, J. H.; Liu, T. R.; Tao, Y. T.; Jiang, R. B.; Liu, M. X.; Xiao, G. H.; Zhu, J. H.; Zhou, Z. K.; Wang, X. H. et al. Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit. Nat. Commun. 2013, 4, 2381.

    Article  Google Scholar 

  64. [64]

    Lee, J. S.; Han, M. S.; Mirkin, C. A. Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNAfunctionalized gold nanoparticles. Angew. Chem., Int. Ed. 2007, 46, 4093–4096.

    Article  CAS  Google Scholar 

  65. [65]

    Ding, C. F.; Li, H.; Hu, K. C.; Lin, J. M. Electrochemical immunoassay of hepatitis B surface antigen by the amplification of gold nanoparticles based on the nanoporous gold electrode. Talanta 2010, 80, 1385–1391.

    Article  CAS  Google Scholar 

  66. [66]

    Huang, C. C.; Chang, H. T. Selective gold-nanoparticlebased “turn-on” fluorescent sensors for detection of mercury(II) in aqueous solution. Anal. Chem. 2006, 78, 8332–8338.

    Article  CAS  Google Scholar 

  67. [67]

    Li, W. B.; Jiang, X. Q.; Xue, J. C.; Zhou, Z. K.; Zhou, J. H. Antibody modified gold nano-mushroom arrays for rapid detection of alpha-fetoprotein. Biosens. Bioelectron. 2015, 68, 468–474.

    Article  CAS  Google Scholar 

  68. [68]

    Cesario, J.; Quidant, R.; Badenes, G.; Enoch, S. Electromagnetic coupling between a metal nanoparticle grating and a metallic surface. Opt. Lett. 2005, 30, 3404–3406.

    Article  Google Scholar 

  69. [69]

    Gramotnev, D. K.; Pors, A.; Willatzen, M.; Bozhevolnyi, S. I. Gap-plasmon nanoantennas and bowtie resonators. Phys. Rev. B 2012, 85, 045434.

    Article  CAS  Google Scholar 

  70. [70]

    Moreau, A.; Ciraci, C.; Mock, J. J.; Hill, R. T.; Wang, Q.; Wiley, B. J.; Chilkoti, A.; Smith, D. R. Controlled-reflectance surfaces with film-coupled colloidal nanoantennas. Nature 2012, 492, 86–89.

    Article  CAS  Google Scholar 

  71. [71]

    Akselrod, G. M.; Argyropoulos, C.; Hoang, T. B.; Ciracì, C.; Fang, C.; Huang, J. N.; Smith, D. R.; Mikkelsen, M. H. Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas. Nat. Photonics 2014, 8, 835–840.

    Article  CAS  Google Scholar 

  72. [72]

    Lin, Q. Y.; Li, Z. Y.; Brown, K. A.; O’Brien, M. N.; Ross, M. B.; Butun, Y. Z. S.; Butun, S.; Chen, P. C.; Schatz, G. C.; Dravid, V. P. et al. Strong coupling between plasmonic gap modes and photonic lattice modes in DNA-assembled gold nanocube arrays. Nano Lett. 2015, 15, 4699–4703.

    Article  CAS  Google Scholar 

  73. [73]

    Li, Z. Y.; Butun, S.; Aydin, K. Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces. ACS Nano 2014, 8, 8242–8248.

    Article  CAS  Google Scholar 

  74. [74]

    Wang, C.; Zhang, Q.; Song, Y.; Chou, S. Y. Plasmonic barcoupled dots-on-pillar cavity antenna with dual resonances for infrared absorption and sensing: Performance and nanoimprint fabrication. ACS Nano 2014, 8, 2618–2624.

    Article  CAS  Google Scholar 

  75. [75]

    Bahramipanah, M.; Dutta-Gupta, S.; Abasahl, B.; Martin, O. J. F. Cavity-coupled plasmonic device with enhanced sensitivity and figure-of-merit. ACS Nano 2015, 9, 7621–7633.

    Article  CAS  Google Scholar 

  76. [76]

    Curto, A. G.; Volpe, G.; Taminiau, T. H.; Kreuzer, M. P.; Quidant, R.; van Hulst, N. F. Unidirectional emission of a quantum dot coupled to a nanoantenna. Science 2010, 329, 930–933.

    Article  CAS  Google Scholar 

  77. [77]

    Vecchi, G.; Giannini, V.; Gómez Rivas, J. Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas. Phys. Rev. B 2009, 80, 201401.

    Article  CAS  Google Scholar 

  78. [78]

    Rodriguez, S. R. K.; Lozano, G.; Verschuuren, M. A.; Gomes, R.; Lambert, K.; De Geyter, B.; Hassinen, A.; Van Thourhout, D.; Hens, Z.; Gómez Rivas, J. Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light. Appl. Phys. Lett. 2012, 100, 111103.

    Article  CAS  Google Scholar 

  79. [79]

    Guo, R.; Derom, S.; Väkeväinen, A. I.; van Dijk-Moes, R. J. A.; Liljeroth, P.; Vanmaekelbergh, D.; Törmä, P. Controlling quantum dot emission by plasmonic nanoarrays. Opt. Express 2015, 23, 28206–28215.

    Article  CAS  Google Scholar 

  80. [80]

    Vecchi, G.; Giannini, V.; Gómez Rivas, J. Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas. Phys. Rev. Lett. 2009, 102, 146807.

    Article  CAS  Google Scholar 

  81. [81]

    Shi, L.; Hakala, T. K.; Rekola, H. T.; Martikainen, J. P.; Moerland, R. J.; Törmä, P. Spatial coherence properties of organic molecules coupled to plasmonic surface lattice resonances in the weak and strong coupling regimes. Phys. Rev. Lett. 2014, 112, 153002.

    Article  CAS  Google Scholar 

  82. [82]

    Väkeväinen, A. I.; Moerland, R. J.; Rekola, H. T.; Eskelinen, A. P.; Martikainen, J. P.; Kim, D. H.; Törmä, P. Plasmonic surface lattice resonances at the strong coupling regime. Nano Lett. 2014, 14, 1721–1727.

    Article  CAS  Google Scholar 

  83. [83]

    Todisco, F.; Esposito, M.; Panaro, S.; De Giorgi, M.; Dominici, L.; Ballarini, D.; Fernández-Domínguez, A. I.; Tasco, V.; Cuscuna, M.; Passaseo, A. et al. Toward cavity quantum electrodynamics with hybrid photon gap-plasmon states. ACS Nano 2016, 10, 11360–11368.

    Article  CAS  Google Scholar 

  84. [84]

    Caldwell, J. D.; Glembocki, O.; Bezares, F. J.; Bassim, N. D.; Rendell, R. W.; Feygelson, M.; Ukaegbu, M.; Kasica, R.; Shirey, L.; Hosten, C. Plasmonic nanopillar arrays for large-area, high-enhancement surface-enhanced raman scattering sensors. ACS Nano 2011, 5, 4046–4055.

    Article  CAS  Google Scholar 

  85. [85]

    Lee, S. W.; Lee, K. S.; Ahn, J.; Lee, J. J.; Kim, M. G.; Shin, Y. B. Highly sensitive biosensing using arrays of plasmonic au nanodisks realized by nanoimprint lithography. ACS Nano 2011, 5, 897–904.

    Article  CAS  Google Scholar 

  86. [86]

    Raza, S.; Toscano, G.; Jauho, A. P.; Mortensen, N. A.; Wubs, M. Refractive-index sensing with ultrathin plasmonic nanotubes. Plasmonics 2013, 8, 193–199.

    Article  CAS  Google Scholar 

  87. [87]

    Briscoe, J. L.; Cho, S. Y. A periodically coupled plasmon nanostructure for refractive index sensing. Opt. Express 2011, 19, 8815–8820.

    Article  Google Scholar 

  88. [88]

    Vazquez-Mena, O.; Sannomiya, T.; Tosun, M.; Villanueva, L. G.; Savu, V.; Voros, J.; Brugger, J. High-resolution resistless nanopatterning on polymer and flexible substrates for plasmonic biosensing using stencil masks. ACS Nano 2012, 6, 5474–5481.

    Article  CAS  Google Scholar 

  89. [89]

    Chung, P. Y.; Lin, T. H.; Schultz, G.; Batich, C.; Jiang, P. Nanopyramid surface plasmon resonance sensors. Appl. Phys. Lett. 2010, 96, 261108.

    Article  CAS  Google Scholar 

  90. [90]

    Kravets, V. G.; Schedin, F.; Jalil, R.; Britnell, L.; Gorbachev, R. V.; Ansell, D.; Thackray, B.; Novoselov, K. S.; Geim, A. K.; Kabashin, A. V. et al. Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection. Nat. Mater. 2013, 12, 304–309.

    Article  CAS  Google Scholar 

  91. [91]

    Liu, S. D.; Qi, X.; Zhai, W. C.; Chen, Z. H.; Wang, W. J.; Han, J. B. Polarization state-based refractive index sensing with plasmonic nanostructures. Nanoscale 2015, 7, 20171–20179.

    Article  CAS  Google Scholar 

  92. [92]

    Kravets, V. G.; Schedin, F.; Grigorenko, A. N. Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles. Phys. Rev. Lett. 2008, 101, 087403.

    Article  CAS  Google Scholar 

  93. [93]

    D’Andrea, C.; Bochterle, J.; Toma, A.; Huck, C.; Neubrech, F.; Messina, E.; Fazio, B.; Maragò, O. M.; Di Fabrizio, E.; de la Chapelle, M. L. et al. Optical nanoantennas for multiband surface-enhanced infrared and raman spectroscopy. ACS Nano 2013, 7, 3522–3531.

    Article  CAS  Google Scholar 

  94. [94]

    Chu, Y. Z.; Banaee, M. G.; Crozier, K. B. Double-resonance plasmon substrates for surface-enhanced raman scattering with enhancement at excitation and stokes frequencies. ACS Nano 2010, 4, 2804–2810.

    Article  CAS  Google Scholar 

  95. [95]

    Liu, Z. Q.; Liu, G. Q.; Liu, X. S.; Huang, S.; Wang, Y.; Pan, P. P.; Liu, M. L. Achieving an ultra-narrow multiband light absorption meta-surface via coupling with an optical cavity. Nanotechnology 2015, 26, 235702.

    Article  CAS  Google Scholar 

  96. [96]

    Aslan, E.; Turkmen, M. Novel dual-band resonator nanoantenna array for infrared detection applications. Sensor Mater. 2013, 25, 689–696.

    Google Scholar 

  97. [97]

    Liu, Z. Q.; Shao, H. B.; Liu, G. Q.; Liu, X. S.; Zhou, H. Q.; Hu, Y.; Zhang, X. N.; Cai, Z. J.; Gu, G. λ 3/20000 plasmonic nanocavities with multispectral ultra-narrowband absorption for high-quality sensing. Appl. Phys. Lett. 2014, 104, 081116.

    Article  CAS  Google Scholar 

  98. [98]

    Cetin, A. E.; Kaya, S.; Mertiri, A.; Aslan, E.; Erramilli, S.; Altug, H.; Turkmen, M. Dual-band plasmonic resonator based on Jerusalem cross-shaped nanoapertures. Photonics Nanostruct. Fund. Appl. 2015, 15, 73–80.

    Article  Google Scholar 

  99. [99]

    Yang, A. K.; Odom, T. W. Breakthroughs in photonics 2014: Advances in plasmonic nanolasers. IEEE Photonics J. 2015, 7, 0700606.

    Google Scholar 

  100. [100]

    Bergman, D. J.; Stockman, M. I. Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett. 2003, 90, 027402.

    Article  CAS  Google Scholar 

  101. [101]

    Zhou, W.; Dridi, M.; Suh, J. Y.; Kim, C. H.; Co, D. T.; Wasielewski, M. R.; Schatz, G. C.; Odom, T. W. Lasing action in strongly coupled plasmonic nanocavity arrays. Nat. Nanotechnol. 2013, 8, 506–511.

    Article  CAS  Google Scholar 

  102. [102]

    Yang, A. K.; Hoang, T. B.; Dridi, M.; Deeb, C.; Mikkelsen, M. H.; Schatz, G. C.; Odom, T. W. Real-time tunable lasing from plasmonic nanocavity arrays. Nat. Commun. 2015, 6, 6939.

    Article  CAS  Google Scholar 

  103. [103]

    Yang, A. K.; Li, Z. Y.; Knudson, M. P.; Hryn, A. J.; Wang, W. J.; Aydin, K.; Odom, T. W. Unidirectional lasing from template-stripped two-dimensional plasmonic crystals. ACS Nano 2015, 9, 11582–11588.

    Article  CAS  Google Scholar 

  104. [104]

    Wang, D. Q.; Yang, A. K.; Wang, W. J.; Hua, Y.; Schaller, R. D.; Schatz, G. C.; Odom, T. W. Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices. Nat. Nanotechnol. 2017, 12, 889–894.

    Article  CAS  Google Scholar 

  105. [105]

    Yang, A. K.; Hryn, A. J.; Bourgeois, M. R.; Lee, W. K.; Hu, J.; Schatz, G. C.; Odom, T. W. Programmable and reversible plasmon mode engineering. Proc. Natl. Acad. Sci. USA 2016, 113, 14201–14206.

    Article  CAS  Google Scholar 

  106. [106]

    Kuznetsov, A. I.; Evlyukhin, A. B.; Goncalves, M. R.; Reinhardt, C.; Koroleva, A.; Arnedillo, M. L.; Kiyan, R.; Marti, O.; Chichkov, B. N. Laser fabrication of large-scale nanoparticle arrays for sensing applications. ACS Nano 2011, 5, 4843–4849.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial supports of the Office of Naval Research Young Investigator Program (No. N00014-17-1-2424) and of the Army Research Office (No. W911NF-17-1-0561).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yuebing Zheng.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rajeeva, B.B., Lin, L. & Zheng, Y. Design and applications of lattice plasmon resonances. Nano Res. 11, 4423–4440 (2018). https://doi.org/10.1007/s12274-017-1909-4

Download citation

Keywords

  • plasmonics
  • lattice plasmon resonance
  • nanoparticle array
  • coupling
  • sensors