Nano Research

, Volume 11, Issue 5, pp 2705–2714 | Cite as

Soft thermal nanoimprint lithography using a nanocomposite mold

  • Viraj Bhingardive
  • Liran Menahem
  • Mark SchvartzmanEmail author
Research Article


Soft nanoimprint lithography has been limited to ultraviolet (UV) curable resists. Here, we introduce a novel approach for soft thermal nanoimprinting. Thisunprecedented combination of the terms “soft” and “thermal” for nanoimprinting became possible thanks to an innovative nanocomposite mold consisting of aflexible polydimethylsiloxane (PDMS) substrate with chemically attached rigidrelief features. We used soft thermal nanoimprinting to produce high-resolution nanopatterns with a sub-100 nm feature size. Furthermore, we demonstrate the applicability of our nanoimprint approach for the nanofabrication of thermallyimprinted nanopatterns on non-planar surfaces such as lenses. Our new nanofabrication strategy paves the way to numerous applications that require the direct fabrication of functional nanostructures on unconventional substrates.


soft lithography nanoimprint lithography PDMS non-planar substrates 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by Adelis Foundation for Renewable Energy (No. 2021611) and Israel Science Foundation (No. 1401/15). Viraj Bhingardive thanks the Negev-Tsin Scholarship for its support.

Supplementary material

12274_2017_1900_MOESM1_ESM.pdf (1.4 mb)
Soft thermal nanoimprint lithography using a nanocomposite mold


  1. [1]
    Xia, Y. N.; Whitesides, G. M. Soft lithography. Annu. Rev. Mater. Sci. 1998, 28, 153–184.CrossRefGoogle Scholar
  2. [2]
    Qin, D.; Xia, Y. N.; Whitesides, G. M. Soft lithography for micro- and nanoscale patterning. Nat. Protoc. 2010, 5, 491–502.CrossRefGoogle Scholar
  3. [3]
    Guo, L. J. Nanoimprint lithography: Methods and material requirements. Adv. Mater. 2007, 19, 495–513.CrossRefGoogle Scholar
  4. [4]
    Legrand, D. G.; Gaines, G. L., Jr. The molecular weight dependence of polymer surface tension. J. Colloid Interface Sci. 1969, 31, 162–167.CrossRefGoogle Scholar
  5. [5]
    Jung, G. Y.; Li, Z. Y.; Wu, W.; Chen, Y.; Olynick, D. L.; Wang, S. Y.; Tong, W. M.; Williams, R. S. Vapor-phase self-assembled monolayer for improved mold release in nanoimprint lithography. Langmuir 2005, 21, 1158–1161.CrossRefGoogle Scholar
  6. [6]
    Moran, I. W.; Briseno, A. L.; Loser, S.; Carter, K. R. Device fabrication by easy soft imprint nano-lithography. Chem. Mater. 2008, 20, 4595–4601.CrossRefGoogle Scholar
  7. [7]
    Fan, Z. Y.; Razavi, H.; Do, J.-W.; Moriwaki, A.; Ergen, O.; Chueh, J. L.; Leu, P. W.; Ho, J. C.; Takahashi, T.; Reichertz, L. A. et al. Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nat. Mater. 2009, 8, 648–653.CrossRefGoogle Scholar
  8. [8]
    Chen, J. W.; Gu, C. L.; Lin, H.; Chen, S.-C. Soft mold-based hot embossing process for precision imprinting of optical components on non-planar surfaces. Opt. Express 2015, 23, 20977–20985.CrossRefGoogle Scholar
  9. [9]
    Delamarche, E.; Schmid, H.; Michel, B.; Biebuyck, H. Stability of molded polydimethylsiloxane microstructures. Adv. Mater. 1997, 9, 741–746.CrossRefGoogle Scholar
  10. [10]
    Hua, F.; Sun, Y. G.; Gaur, A.; Meitl, M. A.; Bilhaut, L.; Rotkina, L.; Wang, J. F.; Geil, P.; Shim, M.; Rogers, J. A. et al. Polymer imprint lithography with molecular-scale resolution. Nano Lett. 2004, 4, 2467–2471.CrossRefGoogle Scholar
  11. [11]
    Schmid, H.; Michel, B. Siloxane polymers for high-resolution, high-accuracy soft lithography. Macromolecules 2000, 33, 3042–3049.CrossRefGoogle Scholar
  12. [12]
    Odom, T. W.; Love, J. C.; Wolfe, D. B.; Paul, K. E.; Whitesides, G. M. Improved pattern transfer in soft lithography using composite stamps. Langmuir 2002, 18, 5314–5320.CrossRefGoogle Scholar
  13. [13]
    Li, Z. W.; Gu, Y. N.; Wangs, L.; Ge, H. X.; Wu, W.; Xia, Q. F.; Yuan, C. S.; Chen, Y. F.; Cui, B.; Williams, R. S. Hybrid nanoimprint-soft lithography with sub-15 nm resolution. Nano Lett. 2009, 9, 2306–2310.CrossRefGoogle Scholar
  14. [14]
    Richeton, J.; Ahzi, S.; Vecchio, K. S. S.; Jiang, F. C.; Adharapurapu, R. R. Influence of temperature and strain rate on the mechanical behavior of three amorphous polymers: Characterization and modeling of the compressive yield stress. Int. J. Solids Struct. 2006, 43, 2318–2335.CrossRefGoogle Scholar
  15. [15]
    Wang, Z. X.; Volinsky, A. A.; Gallant, N. D. Crosslinking effect on polydimethylsiloxane elastic modulus measured by custom-built compression instrument. J. Appl. Polymer Sci. 2014, 131, 41050.CrossRefGoogle Scholar
  16. [16]
    Chuah, Y. J.; Koh, Y. T.; Lim, K.; Menon, N. V.; Wu, Y. N.; Kang, Y. J. Simple surface engineering of polydimethylsiloxane with polydopamine for stabilized mesenchymal stem cell adhesion and multipotency. Sci. Rep. 2015, 5, 18162.CrossRefGoogle Scholar
  17. [17]
    Lee, J. N.; Park, C.; Whitesides, G. M. Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal. Chem. 2003, 75, 6544–6554.CrossRefGoogle Scholar
  18. [18]
    Menahem, L.; Schvartzman, M. Soft nanoimprint mold with rigid relief features for improved pattern transfer. J. Vac. Sci. Technol. B 2017, 35, 010602.CrossRefGoogle Scholar
  19. [19]
    Maex, K.; Baklanov, M. R.; Shamiryan, D.; Lacopi, F.; Brongersma, S. H.; Yanovitskaya, Z. S. Low dielectric constant materials for microelectronics. J. Appl. Phys. 2003, 93, 8793–8841.CrossRefGoogle Scholar
  20. [20]
    Yamazaki, K.; Namatsu, H. 5-nm-order electron-beam litho-graphy for nanodevice fabrication. Jpn. J. Appl. Phys. 2004, 43, 3767–3771.CrossRefGoogle Scholar
  21. [21]
    Bhattacharya, S.; Datta, A.; Berg, J. M.; Gangopadhyay, S. Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength. J. Microelectromech. Syst. 2005, 14, 590–597.CrossRefGoogle Scholar
  22. [22]
    McDonald, J. C.; Duffy, D. C.; Anderson, J. R.; Chiu, D. T.; Wu, H. K.; Schueller, O. J. A.; Whitesides, G. M. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 2000, 21, 27–40.CrossRefGoogle Scholar
  23. [23]
    Schvartzman, M.; Palma, M.; Sable, J.; Abramson, J.; Hu, X.; Sheetz, M. P.; Wind, S. J. Nanolithographic control of the spatial organization of cellular adhesion receptors at the single-molecule level. Nano Lett. 2011, 11, 1306–1312.CrossRefGoogle Scholar
  24. [24]
    Schuster, B.-E.; Haug, A.; Häffner, M.; Blideran, M. M.; Fleischer, M.; Peisert, H.; Kern, D. P.; Chassé, T. Characterization of the morphology and composition of commercial negative resists used for lithographic processes. Anal. Bioanal. Chem. 2009, 393, 1899–1905.CrossRefGoogle Scholar
  25. [25]
    Yuan, Q. H..; Yin, G. Q.; Ning, Z. Y. Effect of oxygen plasma on low dielectric constant HSQ (Hydrogensilsesquioxane) films. Plasma Sci. Technol. 2013, 15, 86–88.CrossRefGoogle Scholar
  26. [26]
    Kawamori, M.; Nakamatsu, K.; Haruyama, Y.; Matsui, S. Effect of oxygen plasma irradiation on hydrogen silsesquioxane nanopatterns replicated by room-temperature nanoimprinting. Jpn. J App. Phys. 2006, 45, 8994–8996.CrossRefGoogle Scholar
  27. [27]
    Cai, H. G.; Wind, S. J. Improved glass surface passivation for single-molecule nanoarrays. Langmuir 2016, 32, 10034–10041.CrossRefGoogle Scholar
  28. [28]
    Yang, K.-Y.; Yoon, K.-M.; Kim, J.-W.; Lee, J.-H.; Lee, H. Low temperature fabrication of residue-free polymer patterns on flexible polymer substrate. Jpn. J. Appl. Phys. 2009, 48, 095003.CrossRefGoogle Scholar
  29. [29]
    Liu, M.; Sun, J. R.; Chen, Q. F. Influences of heating temperature on mechanical properties of polydimethylsiloxane. Sens. Actuators A: Phys. 2009, 151, 42–45.CrossRefGoogle Scholar
  30. [30]
    Lötters, J. C.; Olthuis, W.; Veltink, P. H.; Bergveld, P. The mechanical properties of the rubber elastic polymer polyd-imethylsiloxane for sensor applications. J. Micromech. Microeng. 1997, 7, 145–147.CrossRefGoogle Scholar
  31. [31]
    Gates, B. D.; Whitesides, G. M. Replication of vertical features smaller than 2 nm by soft lithography. J. Am. Chem. Soc. 2003, 125, 14986–14987.CrossRefGoogle Scholar
  32. [32]
    Hillborg, H.; Ankner, J. F.; Gedde, U. W.; Smith, G. D.; Yasuda, H. K.; Wikström, K. Crosslinked polydimethylsiloxane exposed to oxygen plasma studied by neutron reflectometry and other surface specific techniques. Polymer 2000, 41, 6851–6863.CrossRefGoogle Scholar
  33. [33]
    Gogolides, E.; Constantoudis, V.; Kokkoris, G.; Kontziampasis, D.; Tsougeni, K.; Boulousis, G.; Vlachopoulou, M.; Tserepi, A. Controlling roughness: From etching to nanotexturing and plasma-directed organization on organic and inorganic materials. J. Phys. D: Appl. Phys. 2011, 44, 174021.CrossRefGoogle Scholar
  34. [34]
    Liou, H.-C.; Pretzer, J. Effect of curing temperature on the mechanical properties of hydrogen silsesquioxane thin films. Thin Solid Films 1998, 335, 186–191.CrossRefGoogle Scholar
  35. [35]
    Chung, S. W.; Shin, J. H.; Park, N. H.; Park, J. W. Dielectric properties of hydrogen silsesquioxane films degraded by heat and plasma treatment. Jpn. J. Appl. Phys. 1999, 38, 5214–5219.CrossRefGoogle Scholar
  36. [36]
    Oh, Y.; Lim, J. W.; Kim, J. G.; Wang, H.; Kang, B.-H.; Park, Y. W.; Kim, H.; Jang, Y. J.; Kim, J.; Kim, D. H. et al. Plasmonic periodic nanodot arrays via laser interference lithography for organic photovoltaic cells with >10% efficiency. ACS Nano 2016, 10, 10143–10151.CrossRefGoogle Scholar
  37. [37]
    Bi, Y.-G.; Feng, J.; Li, Y.-F.; Zhang, X.-L.; Liu, Y.-F.; Jin, Y.; Sun, H.-B. Broadband light extraction from white organic light-emitting devices by employing corrugated metallic electrodes with dual periodicity. Adv. Mater. 2013, 25, 6969–6974.CrossRefGoogle Scholar
  38. [38]
    Jin, Y.; Feng, J.; Zhang, X.-L.; Bi, Y.-G.; Bai. Y.; Chen, L.; Lan, T.; Liu, Y.-F.; Chen, Q.-D.; Sun, H.-B. Solving effici-ency-stability tradeoff in top-emitting organic light-emitting devices by employing periodically corrugated metallic cathode. Adv. Mater. 2012, 24, 1187–1191.CrossRefGoogle Scholar
  39. [39]
    Bi, Y.-G.; Feng, J.; Li, Y.-F.; Zhang, Y.-L.; Liu, Y.-S.; Chen, L.; Liu, Y.-F.; Guo, L.; Wei, S.; Sun, H.-B. Arbitrary shape designable microscale organic light-emitting devices by using femtosecond laser reduced graphene oxide as a patterned electrode. ACS Photonics 2014, 1, 690–695.CrossRefGoogle Scholar
  40. [40]
    Fujita, Y.; Aubert, R.; Walke, P.; Yuan, H.; Kenens, B.; Inose, T.; Steuwe, C.; Toyouchi, S.; Fortuni, B.; Chamtouri, M. et al. Highly controllable direct femtosecond laser writing of gold nanostructures on titanium dioxide surfaces. Nanoscale 2017, 9, 13025–13033.CrossRefGoogle Scholar
  41. [41]
    Xiong, W.; Zhou, Y. S.; He, X. N.; Gao, Y.; Mahjouri-Samani, M.; Jiang, L.; Baldacchini, T.; Lu, Y. F. Simultaneous additive and subtractive three-dimensional nanofabrication using integrated two-photon polymerization and multiphoton ablation. Light Sci. Appl. 2012, 1, e6.CrossRefGoogle Scholar
  42. [42]
    Haynes, C. L.; Van Duyne, R. P. Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J. Phys. Chem. B 2001, 105, 5599–5611.CrossRefGoogle Scholar
  43. [43]
    Bates, C. M.; Maher, M. J.; Janes, D. W.; Ellison, C. J.; Willson, C. G. Block copolymer lithography. Macromolecules 2014, 47, 2–12.CrossRefGoogle Scholar
  44. [44]
    Guo, L. J. Recent progress in nanoimprint technology and its applications. J. Phys. D: Appl. Phys. 2004, 37, R123–R141.CrossRefGoogle Scholar
  45. [45]
    Chou, S. Y.; Krauss, P. R.; Renstrom, P. J. Imprint lithography with 25-nanometer resolution. Science 1996, 272, 85–87.CrossRefGoogle Scholar
  46. [46]
    Johnston, I. D.; McCluskey, D. K.; Tan, C. K. L.; Tracey, M. C. Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering. J. Micromech. Microeng. 2014, 24, 035017.CrossRefGoogle Scholar
  47. [47]
    Kim, B.; Park, M.; Kim, Y. S.; Jeong, U. Thermal expansion and contraction of an elastomer stamp causes position-dep-endent polymer patterns in capillary force lithography. ACS Appl. Mater. Interfaces 2011, 3, 4695–4702.CrossRefGoogle Scholar
  48. [48]
    Cheyns, D.; Vasseur, K.; Rolin, C.; Genoe, J.; Poortmans, J.; Heremans, P. Nanoimprinted semiconducting polymer films with 50 nm features and their application to organic hetero-junction solar cells. Nanotechnology 2008, 19, 424016.CrossRefGoogle Scholar
  49. [49]
    Cecchini, M.; Signori, F.; Pingue, P.; Bronco, S.; Ciardelli, F.; Beltram, F. High-resolution poly(ethylene terephthalate) (PET) hot embossing at low temperature: Thermal, mechanical, and optical analysis of nanopatterned films. Langmuir 2008, 24, 12581–12586.CrossRefGoogle Scholar
  50. [50]
    Juang, Y.-J.; Lee, L. J.; Koelling, K. W. Hot embossing in microfabrication. Part I: Experimental. Polymer Eng. Sci. 2002, 42, 539–550.Google Scholar
  51. [51]
    Subramani, C.; Ofir, Y.; Patra, D.; Jordan, B. J.; Moran, I. W.; Park, M.-H.; Carter, K. R.; Rotello, V. M. Nanoimprinted polyethyleneimine: A multimodal template for nanoparticle assembly and immobilization. Adv. Funct. Mater. 2009, 19, 2937–2942.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Viraj Bhingardive
    • 1
  • Liran Menahem
    • 1
  • Mark Schvartzman
    • 1
    Email author
  1. 1.Department of Materials Engineering, Isle Katz Institute of Nanoscale Science and TechnologyBen-Gurion University of the NegevBeer-ShevaIsrael

Personalised recommendations