Skip to main content

Efficient fully laser-patterned flexible perovskite modules and solar cells based on low-temperature solution-processed SnO2/mesoporous-TiO2 electron transport layers


Efficient flexible perovskite solar cells and modules were developed using a combination of SnO2 and mesoporous-TiO2 as a fully solution-processed electron transport layer (ETL). Cells using such ETLs delivered a maximum power conversion efficiency (PCE) of 14.8%, which was 30% higher than the PCE of cells with only SnO2 as the ETL. The presence of a mesoporous TiO2 scaffold layer over SnO2 led to higher rectification ratios, lower series resistances, and higher shunt resistances. The cells were also evaluated under 200 and 400 lx artificial indoor illumination and found to deliver maximum power densities of 9.77 μW/cm2 (estimated PCE of 12.8%) and 19.2 μW/cm2 (estimated PCE of 13.3%), respectively, representing the highest values among flexible photovoltaic technologies reported so far. Furthermore, for the first time, a fully laser-patterned flexible perovskite module was fabricated using a complete three-step laser scribing procedure (P1, P2, P3) with a PCE of 8.8% over an active area of 12 cm2 under an illumination of 1 sun.

This is a preview of subscription content, access via your institution.


  1. [1]

    Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.

    Article  Google Scholar 

  2. [2]

    Yang, W. S.; Park, B.-W.; Jung, E. H.; Jeon, N. J.; Kim, Y. C.; Lee, D. U.; Shin, S. S.; Seo, J.; Kim, E. K.; Noh, J. H. et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 2017, 356, 1376–1379.

    Article  Google Scholar 

  3. [3]

    Correa-Baena, J.-P.; Abate, A.; Saliba, M.; Tress, W.; Jesper Jacobsson, T.; Grätzel, M.; Hagfeldt, A. The rapid evolution of highly efficient perovskite solar cells. Energy Environ. Sci. 2017, 10, 710–727.

    Article  Google Scholar 

  4. [4]

    Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342, 341–344.

    Article  Google Scholar 

  5. [5]

    D’Innocenzo, V.; Grancini, G.; Alcocer, M. J. P.; Kandada, A. R. S.; Stranks, S. D.; Lee, M. M.; Lanzani, G.; Snaith, H. J.; Petrozza, A. Excitons versus free charges in organo-leadtri-halide perovskites. Nat. Common. 2014, 5, 3586.

    Google Scholar 

  6. [6]

    Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Chemical management for colorful, efficient, and stable inorganic−organic hybrid nanostructured solar cells. Nano Lett. 2013, 13, 1764–1769.

    Article  Google Scholar 

  7. [7]

    Casaluci, S.; Cinà, L.; Matteocci, F.; Lugli, P.; Di Carlo, A. Fabrication and characterization of mesoscopic perovskite photodiodes. IEEE Trans. Nanotechnol. 2016, 15, 255–260.

    Article  Google Scholar 

  8. [8]

    Palma, A. L.; Cinà, L.; Busby, Y.; Marsella, A.; Agresti, A.; Pescetelli, S.; Pireaux, J. J.; Di Carlo, A. Mesoscopic perovskite light-emitting diodes. ACS Appl. Mater. Interfaces 2016, 8, 26989–26997.

    Article  Google Scholar 

  9. [9]

    Zhu, H. M.; Fu, Y. P.; Meng, F.; Wu, X. X.; Gong, Z. Z.; Ding, Q.; Gustafsson, M. V.; Trinh, M. T.; Jin, S.; Zhu, X. Y. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 2015, 14, 636–642.

    Article  Google Scholar 

  10. [10]

    Razza, S.; Castro-Hermosa, S.; Di Carlo, A.; Brown, T. M. Research update: Large-area deposition, coating, printing, and processing techniques for the upscaling of perovskite solar cell technology. APL Mater. 2016, 4, 091508.

    Article  Google Scholar 

  11. [11]

    Hwang, K.; Jung, Y.-S.; Heo, Y.-J.; Scholes, F. H.; Watkins, S. E.; Subbiah, J.; Jones, D. J.; Kim, D.-Y.; Vak, D. Toward large scale roll-to-roll production of fully printed perovskite solar cells. Adv. Mater. 2015, 27, 1241–1247.

    Article  Google Scholar 

  12. [12]

    Castro-Hermosa, S.; Dagar, J.; Marsella, A.; Brown, T. M. Perovskite solar cells on paper and the role of substrates and electrodes on performance. IEEE Electron Dev. Lett. 2017, 38, 1278–1281.

    Article  Google Scholar 

  13. [13]

    Di Giacomo, F.; Zardetto, V.; D’Epifanio, A.; Pescetelli, S.; Matteocci, F.; Razza, S.; Di Carlo, A.; Licoccia, S.; Kessels, W. M. M.; Creatore, M. et al. Flexible perovskite photovoltaic modules and solar cells based on atomic layer deposited compact layers and UV-irradiated TiO2 scaffolds on plastic substrates. Adv. Energy Mater. 2015, 5, 1401808.

    Article  Google Scholar 

  14. [14]

    Bi, C.; Chen, B.; Wei, H.; DeLuca, S.; Huang, J. S. Efficient flexible solar cell based on composition-tailored hybrid perovskite. Adv. Mater. 2017, 29, 1605900.

    Article  Google Scholar 

  15. [15]

    Brown, T. M.; De Rossi, F.; Di Giacomo, F.; Mincuzzi, G.; Zardetto, V.; Reale, A.; Di Carlo, A. Progress in flexible dye solar cell materials, processes and devices. J. Mater. Chem. A 2014, 2, 10788−10817.

    Article  Google Scholar 

  16. [16]

    Reich, N. H.; van Sark, W. G. J. H. M.; Alsema, E. A.; Lof, R. W.; Schropp, R. E. I.; Sinke, W. C.; Turkenburg, W. C. Crystalline silicon cell performance at low light intensities. Solar Energy Mater. Solar Cells 2009, 93, 1471–1481.

    Article  Google Scholar 

  17. [17]

    De Rossi, F.; Pontecorvo, T.; Brown, T. M. Characterization of photovoltaic devices for indoor light harvesting and customization of flexible dye solar cells to deliver superior efficiency under artificial lighting. Appl. Energy 2015, 156, 413–422.

    Article  Google Scholar 

  18. [18]

    Zhan, Y. Q.; Mei, Y. F.; Zheng, L. R. Materials capability and device performance in flexible electronics for the Internet of Things. J. Mater. Chem. C 2014, 2, 1220–1232.

    Article  Google Scholar 

  19. [19]

    Pisoni, S.; Fu, F.; Feurer, T.; Makha, M.; Bissig, B.; Nishiwaki, S.; Tiwari, A. N.; Buecheler, S. Flexible NIR-transparent perovskite solar cells for all-thin-film tandem photovoltaic devices. J. Mater. Chem. A 2017, 5, 13639–13647.

    Article  Google Scholar 

  20. [20]

    Yoon, J.; Sung, H.; Lee, G.; Cho, W.; Ahn, N.; Jung, H. S.; Choi, M. Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: Towards future foldable power sources. Energy Environ. Sci. 2017, 10, 337–345.

    Article  Google Scholar 

  21. [21]

    Pelicano, C. M.; Yanagi, H. Efficient solid-state perovskite solar cells based on nanostructured zinc oxide designed by strategic low temperature water oxidation. J. Mater. Chem. C 2017, 5, 8059–8070.

    Article  Google Scholar 

  22. [22]

    Wang, K.; Shi, Y. T.; Gao, L. G.; Chi, R. H.; Shi, K.; Guo, B. Y.; Zhao, L.; Ma, T. L. W(Nb)Ox-based efficient flexible perovskite solar cells: From material optimization to working principle. Nano Energy 2017, 31, 424–431.

    Article  Google Scholar 

  23. [23]

    Anaraki, E. H.; Kermanpur, A.; Steier, L.; Domanski, K.; Matsui, T.; Tress, W.; Saliba, M.; Abate, A.; Grätzel, M.; Hagfeldt, A.; Correa-Baena, J.-P. Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide. Energy Environ. Sci. 2016, 9, 3128–3134.

    Article  Google Scholar 

  24. [24]

    Correa Baena, J. P.; Steier, L.; Tress, W.; Saliba, M.; Neutzner, S.; Matsui, T.; Giordano, F.; Jacobsson, T. J.; Srimath Kandada, A. R.; Zakeeruddin, S. M. et al. Highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ. Sci. 2015, 8, 2928–2934.

    Article  Google Scholar 

  25. [25]

    Snaith, H. J.; Ducati, C. SnO2-based dye-sensitized hybrid solar cells exhibiting near unity absorbed photon-to-electron conversion efficiency. Nano Lett. 2010, 10, 1259–1265.

    Article  Google Scholar 

  26. [26]

    Tiwana, P.; Docampo, P.; Johnston, M. B.; Snaith, H. J.; Herz, L. M. Electron mobility and injection dynamics in mesoporous ZnO, SnO2, and TiO2 films used in dyesensitized solar cells. ACS Nano 2011, 5, 5158–5166.

    Article  Google Scholar 

  27. [27]

    Lee, Y.; Paek, S.; Cho, K. T.; Oveisi, E.; Gao, P.; Lee, S.; Park, J.-S.; Zhang, Y.; Humphry-Baker, R.; Asiri, A. M. et al. Enhanced charge collection with passivation of the tin oxide layer in planar perovskite solar cells. J. Mater. Chem. A 2017, 5, 12729–12734.

    Article  Google Scholar 

  28. [28]

    Tan, H. R.; Jain, A.; Voznyy, O.; Lan, X. Z.; García de Arquer, F. P.; Fan, J. Z.; Quintero-Bermudez, R.; Yuan, M. J.; Zhang, B.; Zhao, Y. C. et al. Efficient and stable solutionprocessed planar perovskite solar cells via contact passivation. Science 2017, 355, 722–726.

    Article  Google Scholar 

  29. [29]

    Kogo, A.; Ikegami, M.; Miyasaka, T. A SnOx-brookite TiO2 bilayer electron collector for hysteresis-less high efficiency plastic perovskite solar cells fabricated at low process temperature. Chem. Commun. 2016, 52, 8119–8122.

    Article  Google Scholar 

  30. [30]

    Matteocci, F.; Cinà, L.; Di Giacomo, F.; Razza, S.; Palma, A. L.; Guidobaldi, A.; D’Epifanio, A.; Licoccia, S.; Brown, T. M.; Reale, A. et al. High efficiency photovoltaic module based on mesoscopic organometal halide perovskite. Progress Photovolt.: Res. Appl. 2016, 24, 436–445.

    Article  Google Scholar 

  31. [31]

    Palma, A. L.; Matteocci, F.; Agresti, A.; Pescetelli, S.; Calabrò, E.; Vesce, L.; Christiansen, S.; Schmidt, M.; Di Carlo, A. Laser-patterning engineering for perovskite solar modules with 95% aperture ratio. IEEE J. Photovolt. 2017, 7, 1674–1680.

    Article  Google Scholar 

  32. [32]

    Ke, W. J.; Fang, G. J.; Liu, Q.; Xiong, L. B.; Qin, P. L.; Tao, H.; Wang, J.; Lei, H. W.; Li, B. R.; Wan, J. W. et al. Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. J. Am. Chem. Soc. 2015, 137, 6730–6733.

    Article  Google Scholar 

  33. [33]

    Jiang, Q.; Zhang, L. Q.; Wang, H. L.; Yang, X. L.; Meng, J. H.; Liu, H.; Yin, Z. G.; Wu, J. L.; Zhang, X. W.; You, J. B. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat. Energy 2016, 2, 16177.

    Article  Google Scholar 

  34. [34]

    Ahn, N.; Son, D.-Y.; Jang, I.-H.; Kang, S. M.; Choi, M.; Park, N.-G. Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via lewis base adduct of lead(II) iodide. J. Am. Chem. Soc. 2015, 137, 8696–8699.

    Article  Google Scholar 

  35. [35]

    Agresti, A.; Pescetelli, S.; Taheri, B.; Del Rio Castillo, A. E.; Cinà, L.; Bonaccorso, F.; Di Carlo, A. Graphene–perovskite solar cells exceed 18% efficiency: A stability study. ChemSusChem 2016, 9, 2609–2619.

    Article  Google Scholar 

  36. [36]

    Zardetto, V.; Brown, T. M.; Reale, A.; Di Carlo, A. Substrates for flexible electronics: A practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties. J. Polymer Sci. Part B: Polymer Phys. 2011, 49, 638–648.

    Article  Google Scholar 

  37. [37]

    Lucarelli, G.; Di Giacomo, F.; Zardetto, V.; Creatore, M.; Brown, T. M. Efficient light harvesting from flexible perovskite solar cells under indoor white light-emitting diode illumination. Nano Res. 2017, 10, 2130–2145.

    Article  Google Scholar 

  38. [38]

    Li, Y.; Grabham, N. J.; Beeby, S. P.; Tudor, M. J. The effect of the type of illumination on the energy harvesting performance of solar cells. Solar Energy 2015, 111, 21–29.

    Article  Google Scholar 

  39. [39]

    Di Giacomo, F.; Zardetto, V.; Lucarelli, G.; Cinà, L.; Di Carlo, A.; Creatore, M.; Brown, T. M. Mesoporous perovskite solar cells and the role of nanoscale compact layers for remarkable all-round high efficiency under both indoor and outdoor illumination. Nano Energy 2016, 30, 460–469.

    Article  Google Scholar 

  40. [40]

    Mori, S.; Gotanda, T.; Nakano, Y.; Saito, M.; Todori, K.; Hosoya, M. Investigation of the organic solar cell characteristics for indoor LED light applications. Jpn. J. Appl. Phys. 2015, 54, 071602.

    Article  Google Scholar 

  41. [41]

    Mathews, I.; King, P. J.; Stafford, F.; Frizzell, R. Performance of III-V solar cells as indoor light energy harvesters. IEEE J. Photovolt. 2016, 6, 230–235.

    Article  Google Scholar 

  42. [42]

    Freitag, M.; Teuscher, J.; Saygili, Y.; Zhang, X. Y.; Giordano, F.; Liska, P.; Hua, J. L.; Zakeeruddin, S. M.; Moser, J.-E.; Grätzel, M. et al. Dye-sensitized solar cells for efficient power generation under ambient lighting. Nat. Photonics 2017, 11, 372–378.

    Article  Google Scholar 

  43. [43]

    Chen, C.-Y.; Chang, J.-H.; Chiang, K.-M.; Lin, H.-L.; Hsiao, S.-Y.; Lin, H.-W. Perovskite photovoltaics for dim-light applications. Adv. Funct. Mater. 2015, 25, 7064–7070.

    Article  Google Scholar 

  44. [44]

    Agresti, A.; Pescetelli, S.; Cinà, L.; Konios, D.; Kakavelakis, G.; Kymakis, E.; Di Carlo, A. Efficiency and stability enhancement in perovskite solar cells by inserting lithiumneutralized graphene oxide as electron transporting layer. Adv. Funct. Mater. 2016, 26, 2686–2694.

    Article  Google Scholar 

  45. [45]

    Fakharuddin, A.; Di Giacomo, F.; Ahmed, I.; Wali, Q.; Brown, T. M.; Jose, R. Role of morphology and crystallinity of nanorod and planar electron transport layers on the performance and long term durability of perovskite solar cells. J. Power Sources 2015, 283, 61–67.

    Article  Google Scholar 

  46. [46]

    Malinkiewicz, O.; Yella, A.; Lee, Y. H.; Espallargas, G. M.; Graetzel, M.; Nazeeruddin, M. K.; Bolink, H. J. Perovskite solar cells employing organic charge-transport layers. Nat. Photonics 2014, 8, 128–132.

    Article  Google Scholar 

  47. [47]

    Pascoe, A. R.; Yang, M. J.; Kopidakis, N.; Zhu, K.; Reese, M. O.; Rumbles, G.; Fekete, M.; Duffy, N. W.; Cheng, Y.-B. Planar versus mesoscopic perovskite microstructures: The influence of CH3NH3PbI3 morphology on charge transport and recombination dynamics. Nano Energy 2016, 22, 439–452.

    Article  Google Scholar 

  48. [48]

    Wetzelaer, G.-J. A. H.; Scheepers, M.; Sempere, A. M.; Momblona, C.; Ávila, J.; Bolink, H. J. Trap-assisted nonradiative recombination in organic–inorganic perovskite solar cells. Adv. Mater. 2015, 27, 1837–1841.

    Article  Google Scholar 

  49. [49]

    Zaban, A.; Greenshtein, M.; Bisquert, J. Determination of the electron lifetime in nanocrystalline dye solar cells by open-circuit voltage decay measurements. ChemPhysChem 2003, 4, 859–864.

    Article  Google Scholar 

  50. [50]

    Huang, X. K.; Hu, Z. Y.; Xu, J.; Wang, P.; Wang, L. M.; Zhang, J.; Zhu, Y. J. Low-temperature processed SnO2 compact layer by incorporating TiO2 layer toward efficient planar heterojunction perovskite solar cells. Solar Energy Mater. Solar Cells 2017, 164, 87–92.

    Article  Google Scholar 

  51. [51]

    Lee, Y. H.; Luo, J. S.; Son, M. K.; Gao, P.; Cho, K. T.; Seo, J.; Zakeeruddin, S. M.; Grätzel, M.; Nazeeruddin, M. K. Enhanced charge collection with passivation layers in perovskite solar cells. Adv. Mater. 2016, 28, 3966–3972.

    Article  Google Scholar 

  52. [52]

    Heo, J. H.; You, M. S.; Chang, M. H.; Yin, W.; Ahn, T. K.; Lee, S.; Sung, S.J.; Kim, D. H.; lm, H. S. Hysteresis-less mesoscopic CH3NH3PbI3 perovskite hybrid solar cells by introduction of Li-treated TiO2 electrode. Nano Energy 2015, 15, 530–539.

    Article  Google Scholar 

  53. [53]

    Li, Y. W.; Zhao, Y.; Chen, Q.; Yang, Y.; Liu, Y. S.; Hong, Z. R.; Liu, Z. H.; Hsieh, Y. T.; Meng, L.; Li, Y. F. et al. Multifunctional fullerene derivative for interface engineering in perovskite solar cells. J. Am. Chem. Soc. 2015, 137, 15540–15547.

    Article  Google Scholar 

  54. [54]

    Agresti, A.; Pescetelli, S.; Palma, A. L.; Del Rio Castillo, A. E.; Konios, D.; Kakavelakis, G.; Razza, S.; Cinà, L.; Kymakis, E.; Bonaccorso, F. et al. Graphene interface engineering for perovskite solar modules: 12.6% power conversion efficiency over 50 cm2 active area. ACS Energy Lett. 2017, 2, 279–287.

    Article  Google Scholar 

  55. [55]

    Razza, S.; Di Giacomo, F.; Matteocci, F.; Cinà, L.; Palma, A. L.; Casaluci, S.; Cameron, P.; D’Epifanio, A.; Licoccia, S.; Reale, A. et al. Perovskite solar cells and large area modules (100 cm2) based on an air flow-assisted PbI2 blade coating deposition process. J. Power Sources 2015, 277, 286–291.

    Article  Google Scholar 

  56. [56]

    Zhu, L. F.; Shi, J. J.; Li, D. M.; Meng, Q. B. Effect of mesoporous TiO2 layer thickness on the cell performance of perovskite solar cells. Acta Chim. Sinica 2015, 73, 261–266.

    Article  Google Scholar 

  57. [57]

    Leijtens, T.; Lauber, B.; Eperon, G. E.; Stranks, S. D.; Snaith H. J. The importance of perovskite pore filling in organometal mixed halide sensitized TiO2-based solar cells. J. Phys. Chem. Lett. 2014, 5, 1096–1102.

    Article  Google Scholar 

  58. [58]

    Choi, Y. C.; Lee, S. W.; Kim, D.-H. Antisolvent-assisted powder engineering for controlled growth of hybrid CH3NH3PbI3 perovskite thin films. APL Mater. 2017, 5, 026101.

    Article  Google Scholar 

  59. [59]

    Mincuzzi, G.; Palma, A.; Di Carlo, A.; Brown, T. M. Laser processing in the manufacture of dye-sensitized and perovskite solar cell technologies. ChemElectroChem 2016, 3, 9–30

    Article  Google Scholar 

Download references


We thank Francesco Di Giacomo, Dr. Francesca Brunetti, and Prof. Andrea Reale for useful discussions. We thank MIUR for PRIN 2012 (2012A4Z2RY) “AQUASOL” (Celle solari polimeriche processabili da mezzi acquosi: dai materiali ai moduli fotovoltaici), for PERSEO- “PERrovskite-based Solar cells: towards high Efficiency and lOng-term stability” (Bando PRIN 2015-Italian Ministry of University and Scientific Research (MIUR) Decreto Direttoriale 4 novembre 2015 n. 2488, project number 20155LECAJ), the EU CHEETAH project, and the Departamento del Huila’s Scholarship Program No. 677 from Huila, Colombia for funding. A. D. C. gratefully acknowledge the financial support of the Ministry of Education and Science of the Russian Federation in the framework of Increase Competitiveness Program of NUST “MISiS” (No. К2-2017-025), implemented by a governmental decree dated 16th of March 2013, N 211.

Author information



Corresponding author

Correspondence to Thomas M. Brown.

Electronic supplementary material


Efficient fully laser-patterned flexible perovskite modules and solar cells based on low-temperature solution-processed SnO2/mesoporous-TiO2 electron transport layers

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dagar, J., Castro-Hermosa, S., Gasbarri, M. et al. Efficient fully laser-patterned flexible perovskite modules and solar cells based on low-temperature solution-processed SnO2/mesoporous-TiO2 electron transport layers. Nano Res. 11, 2669–2681 (2018).

Download citation


  • SnO2/mesoporous-TiO2 (meso-TiO2) electron transport layer
  • flexible perovskite solar cell
  • flexible perovskite module
  • laser patterning
  • indoor light harvesting