Advertisement

Nano Research

, Volume 11, Issue 5, pp 2669–2681 | Cite as

Efficient fully laser-patterned flexible perovskite modules and solar cells based on low-temperature solution-processed SnO2/mesoporous-TiO2 electron transport layers

  • Janardan Dagar
  • Sergio Castro-Hermosa
  • Matteo Gasbarri
  • Alessandro L. Palma
  • Lucio Cina
  • Fabio Matteocci
  • Emanuele Calabrò
  • Aldo Di Carlo
  • Thomas M. Brown
Research Article

Abstract

Efficient flexible perovskite solar cells and modules were developed using a combination of SnO2 and mesoporous-TiO2 as a fully solution-processed electron transport layer (ETL). Cells using such ETLs delivered a maximum power conversion efficiency (PCE) of 14.8%, which was 30% higher than the PCE of cells with only SnO2 as the ETL. The presence of a mesoporous TiO2 scaffold layer over SnO2 led to higher rectification ratios, lower series resistances, and higher shunt resistances. The cells were also evaluated under 200 and 400 lx artificial indoor illumination and found to deliver maximum power densities of 9.77 μW/cm2 (estimated PCE of 12.8%) and 19.2 μW/cm2 (estimated PCE of 13.3%), respectively, representing the highest values among flexible photovoltaic technologies reported so far. Furthermore, for the first time, a fully laser-patterned flexible perovskite module was fabricated using a complete three-step laser scribing procedure (P1, P2, P3) with a PCE of 8.8% over an active area of 12 cm2 under an illumination of 1 sun.

Keywords

SnO2/mesoporous-TiO2 (meso-TiO2) electron transport layer flexible perovskite solar cell flexible perovskite module laser patterning indoor light harvesting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank Francesco Di Giacomo, Dr. Francesca Brunetti, and Prof. Andrea Reale for useful discussions. We thank MIUR for PRIN 2012 (2012A4Z2RY) “AQUASOL” (Celle solari polimeriche processabili da mezzi acquosi: dai materiali ai moduli fotovoltaici), for PERSEO- “PERrovskite-based Solar cells: towards high Efficiency and lOng-term stability” (Bando PRIN 2015-Italian Ministry of University and Scientific Research (MIUR) Decreto Direttoriale 4 novembre 2015 n. 2488, project number 20155LECAJ), the EU CHEETAH project, and the Departamento del Huila’s Scholarship Program No. 677 from Huila, Colombia for funding. A. D. C. gratefully acknowledge the financial support of the Ministry of Education and Science of the Russian Federation in the framework of Increase Competitiveness Program of NUST “MISiS” (No. К2-2017-025), implemented by a governmental decree dated 16th of March 2013, N 211.

Supplementary material

12274_2017_1896_MOESM1_ESM.pdf (1.4 mb)
Efficient fully laser-patterned flexible perovskite modules and solar cells based on low-temperature solution-processed SnO2/mesoporous-TiO2 electron transport layers

References

  1. [1]
    Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.CrossRefGoogle Scholar
  2. [2]
    Yang, W. S.; Park, B.-W.; Jung, E. H.; Jeon, N. J.; Kim, Y. C.; Lee, D. U.; Shin, S. S.; Seo, J.; Kim, E. K.; Noh, J. H. et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 2017, 356, 1376–1379.CrossRefGoogle Scholar
  3. [3]
    Correa-Baena, J.-P.; Abate, A.; Saliba, M.; Tress, W.; Jesper Jacobsson, T.; Grätzel, M.; Hagfeldt, A. The rapid evolution of highly efficient perovskite solar cells. Energy Environ. Sci. 2017, 10, 710–727.CrossRefGoogle Scholar
  4. [4]
    Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342, 341–344.CrossRefGoogle Scholar
  5. [5]
    D’Innocenzo, V.; Grancini, G.; Alcocer, M. J. P.; Kandada, A. R. S.; Stranks, S. D.; Lee, M. M.; Lanzani, G.; Snaith, H. J.; Petrozza, A. Excitons versus free charges in organo-leadtri-halide perovskites. Nat. Common. 2014, 5, 3586.Google Scholar
  6. [6]
    Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Chemical management for colorful, efficient, and stable inorganic−organic hybrid nanostructured solar cells. Nano Lett. 2013, 13, 1764–1769.CrossRefGoogle Scholar
  7. [7]
    Casaluci, S.; Cinà, L.; Matteocci, F.; Lugli, P.; Di Carlo, A. Fabrication and characterization of mesoscopic perovskite photodiodes. IEEE Trans. Nanotechnol. 2016, 15, 255–260.CrossRefGoogle Scholar
  8. [8]
    Palma, A. L.; Cinà, L.; Busby, Y.; Marsella, A.; Agresti, A.; Pescetelli, S.; Pireaux, J. J.; Di Carlo, A. Mesoscopic perovskite light-emitting diodes. ACS Appl. Mater. Interfaces 2016, 8, 26989–26997.CrossRefGoogle Scholar
  9. [9]
    Zhu, H. M.; Fu, Y. P.; Meng, F.; Wu, X. X.; Gong, Z. Z.; Ding, Q.; Gustafsson, M. V.; Trinh, M. T.; Jin, S.; Zhu, X. Y. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 2015, 14, 636–642.CrossRefGoogle Scholar
  10. [10]
    Razza, S.; Castro-Hermosa, S.; Di Carlo, A.; Brown, T. M. Research update: Large-area deposition, coating, printing, and processing techniques for the upscaling of perovskite solar cell technology. APL Mater. 2016, 4, 091508.CrossRefGoogle Scholar
  11. [11]
    Hwang, K.; Jung, Y.-S.; Heo, Y.-J.; Scholes, F. H.; Watkins, S. E.; Subbiah, J.; Jones, D. J.; Kim, D.-Y.; Vak, D. Toward large scale roll-to-roll production of fully printed perovskite solar cells. Adv. Mater. 2015, 27, 1241–1247.CrossRefGoogle Scholar
  12. [12]
    Castro-Hermosa, S.; Dagar, J.; Marsella, A.; Brown, T. M. Perovskite solar cells on paper and the role of substrates and electrodes on performance. IEEE Electron Dev. Lett. 2017, 38, 1278–1281.CrossRefGoogle Scholar
  13. [13]
    Di Giacomo, F.; Zardetto, V.; D’Epifanio, A.; Pescetelli, S.; Matteocci, F.; Razza, S.; Di Carlo, A.; Licoccia, S.; Kessels, W. M. M.; Creatore, M. et al. Flexible perovskite photovoltaic modules and solar cells based on atomic layer deposited compact layers and UV-irradiated TiO2 scaffolds on plastic substrates. Adv. Energy Mater. 2015, 5, 1401808.CrossRefGoogle Scholar
  14. [14]
    Bi, C.; Chen, B.; Wei, H.; DeLuca, S.; Huang, J. S. Efficient flexible solar cell based on composition-tailored hybrid perovskite. Adv. Mater. 2017, 29, 1605900.CrossRefGoogle Scholar
  15. [15]
    Brown, T. M.; De Rossi, F.; Di Giacomo, F.; Mincuzzi, G.; Zardetto, V.; Reale, A.; Di Carlo, A. Progress in flexible dye solar cell materials, processes and devices. J. Mater. Chem. A 2014, 2, 10788−10817.CrossRefGoogle Scholar
  16. [16]
    Reich, N. H.; van Sark, W. G. J. H. M.; Alsema, E. A.; Lof, R. W.; Schropp, R. E. I.; Sinke, W. C.; Turkenburg, W. C. Crystalline silicon cell performance at low light intensities. Solar Energy Mater. Solar Cells 2009, 93, 1471–1481.CrossRefGoogle Scholar
  17. [17]
    De Rossi, F.; Pontecorvo, T.; Brown, T. M. Characterization of photovoltaic devices for indoor light harvesting and customization of flexible dye solar cells to deliver superior efficiency under artificial lighting. Appl. Energy 2015, 156, 413–422.CrossRefGoogle Scholar
  18. [18]
    Zhan, Y. Q.; Mei, Y. F.; Zheng, L. R. Materials capability and device performance in flexible electronics for the Internet of Things. J. Mater. Chem. C 2014, 2, 1220–1232.CrossRefGoogle Scholar
  19. [19]
    Pisoni, S.; Fu, F.; Feurer, T.; Makha, M.; Bissig, B.; Nishiwaki, S.; Tiwari, A. N.; Buecheler, S. Flexible NIR-transparent perovskite solar cells for all-thin-film tandem photovoltaic devices. J. Mater. Chem. A 2017, 5, 13639–13647.CrossRefGoogle Scholar
  20. [20]
    Yoon, J.; Sung, H.; Lee, G.; Cho, W.; Ahn, N.; Jung, H. S.; Choi, M. Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: Towards future foldable power sources. Energy Environ. Sci. 2017, 10, 337–345.CrossRefGoogle Scholar
  21. [21]
    Pelicano, C. M.; Yanagi, H. Efficient solid-state perovskite solar cells based on nanostructured zinc oxide designed by strategic low temperature water oxidation. J. Mater. Chem. C 2017, 5, 8059–8070.CrossRefGoogle Scholar
  22. [22]
    Wang, K.; Shi, Y. T.; Gao, L. G.; Chi, R. H.; Shi, K.; Guo, B. Y.; Zhao, L.; Ma, T. L. W(Nb)Ox-based efficient flexible perovskite solar cells: From material optimization to working principle. Nano Energy 2017, 31, 424–431.CrossRefGoogle Scholar
  23. [23]
    Anaraki, E. H.; Kermanpur, A.; Steier, L.; Domanski, K.; Matsui, T.; Tress, W.; Saliba, M.; Abate, A.; Grätzel, M.; Hagfeldt, A.; Correa-Baena, J.-P. Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide. Energy Environ. Sci. 2016, 9, 3128–3134.CrossRefGoogle Scholar
  24. [24]
    Correa Baena, J. P.; Steier, L.; Tress, W.; Saliba, M.; Neutzner, S.; Matsui, T.; Giordano, F.; Jacobsson, T. J.; Srimath Kandada, A. R.; Zakeeruddin, S. M. et al. Highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ. Sci. 2015, 8, 2928–2934.CrossRefGoogle Scholar
  25. [25]
    Snaith, H. J.; Ducati, C. SnO2-based dye-sensitized hybrid solar cells exhibiting near unity absorbed photon-to-electron conversion efficiency. Nano Lett. 2010, 10, 1259–1265.CrossRefGoogle Scholar
  26. [26]
    Tiwana, P.; Docampo, P.; Johnston, M. B.; Snaith, H. J.; Herz, L. M. Electron mobility and injection dynamics in mesoporous ZnO, SnO2, and TiO2 films used in dyesensitized solar cells. ACS Nano 2011, 5, 5158–5166.CrossRefGoogle Scholar
  27. [27]
    Lee, Y.; Paek, S.; Cho, K. T.; Oveisi, E.; Gao, P.; Lee, S.; Park, J.-S.; Zhang, Y.; Humphry-Baker, R.; Asiri, A. M. et al. Enhanced charge collection with passivation of the tin oxide layer in planar perovskite solar cells. J. Mater. Chem. A 2017, 5, 12729–12734.CrossRefGoogle Scholar
  28. [28]
    Tan, H. R.; Jain, A.; Voznyy, O.; Lan, X. Z.; García de Arquer, F. P.; Fan, J. Z.; Quintero-Bermudez, R.; Yuan, M. J.; Zhang, B.; Zhao, Y. C. et al. Efficient and stable solutionprocessed planar perovskite solar cells via contact passivation. Science 2017, 355, 722–726.CrossRefGoogle Scholar
  29. [29]
    Kogo, A.; Ikegami, M.; Miyasaka, T. A SnOx-brookite TiO2 bilayer electron collector for hysteresis-less high efficiency plastic perovskite solar cells fabricated at low process temperature. Chem. Commun. 2016, 52, 8119–8122.CrossRefGoogle Scholar
  30. [30]
    Matteocci, F.; Cinà, L.; Di Giacomo, F.; Razza, S.; Palma, A. L.; Guidobaldi, A.; D’Epifanio, A.; Licoccia, S.; Brown, T. M.; Reale, A. et al. High efficiency photovoltaic module based on mesoscopic organometal halide perovskite. Progress Photovolt.: Res. Appl. 2016, 24, 436–445.CrossRefGoogle Scholar
  31. [31]
    Palma, A. L.; Matteocci, F.; Agresti, A.; Pescetelli, S.; Calabrò, E.; Vesce, L.; Christiansen, S.; Schmidt, M.; Di Carlo, A. Laser-patterning engineering for perovskite solar modules with 95% aperture ratio. IEEE J. Photovolt. 2017, 7, 1674–1680.CrossRefGoogle Scholar
  32. [32]
    Ke, W. J.; Fang, G. J.; Liu, Q.; Xiong, L. B.; Qin, P. L.; Tao, H.; Wang, J.; Lei, H. W.; Li, B. R.; Wan, J. W. et al. Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. J. Am. Chem. Soc. 2015, 137, 6730–6733.CrossRefGoogle Scholar
  33. [33]
    Jiang, Q.; Zhang, L. Q.; Wang, H. L.; Yang, X. L.; Meng, J. H.; Liu, H.; Yin, Z. G.; Wu, J. L.; Zhang, X. W.; You, J. B. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat. Energy 2016, 2, 16177.CrossRefGoogle Scholar
  34. [34]
    Ahn, N.; Son, D.-Y.; Jang, I.-H.; Kang, S. M.; Choi, M.; Park, N.-G. Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via lewis base adduct of lead(II) iodide. J. Am. Chem. Soc. 2015, 137, 8696–8699.CrossRefGoogle Scholar
  35. [35]
    Agresti, A.; Pescetelli, S.; Taheri, B.; Del Rio Castillo, A. E.; Cinà, L.; Bonaccorso, F.; Di Carlo, A. Graphene–perovskite solar cells exceed 18% efficiency: A stability study. ChemSusChem 2016, 9, 2609–2619.CrossRefGoogle Scholar
  36. [36]
    Zardetto, V.; Brown, T. M.; Reale, A.; Di Carlo, A. Substrates for flexible electronics: A practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties. J. Polymer Sci. Part B: Polymer Phys. 2011, 49, 638–648.CrossRefGoogle Scholar
  37. [37]
    Lucarelli, G.; Di Giacomo, F.; Zardetto, V.; Creatore, M.; Brown, T. M. Efficient light harvesting from flexible perovskite solar cells under indoor white light-emitting diode illumination. Nano Res. 2017, 10, 2130–2145.CrossRefGoogle Scholar
  38. [38]
    Li, Y.; Grabham, N. J.; Beeby, S. P.; Tudor, M. J. The effect of the type of illumination on the energy harvesting performance of solar cells. Solar Energy 2015, 111, 21–29.CrossRefGoogle Scholar
  39. [39]
    Di Giacomo, F.; Zardetto, V.; Lucarelli, G.; Cinà, L.; Di Carlo, A.; Creatore, M.; Brown, T. M. Mesoporous perovskite solar cells and the role of nanoscale compact layers for remarkable all-round high efficiency under both indoor and outdoor illumination. Nano Energy 2016, 30, 460–469.CrossRefGoogle Scholar
  40. [40]
    Mori, S.; Gotanda, T.; Nakano, Y.; Saito, M.; Todori, K.; Hosoya, M. Investigation of the organic solar cell characteristics for indoor LED light applications. Jpn. J. Appl. Phys. 2015, 54, 071602.CrossRefGoogle Scholar
  41. [41]
    Mathews, I.; King, P. J.; Stafford, F.; Frizzell, R. Performance of III-V solar cells as indoor light energy harvesters. IEEE J. Photovolt. 2016, 6, 230–235.CrossRefGoogle Scholar
  42. [42]
    Freitag, M.; Teuscher, J.; Saygili, Y.; Zhang, X. Y.; Giordano, F.; Liska, P.; Hua, J. L.; Zakeeruddin, S. M.; Moser, J.-E.; Grätzel, M. et al. Dye-sensitized solar cells for efficient power generation under ambient lighting. Nat. Photonics 2017, 11, 372–378.CrossRefGoogle Scholar
  43. [43]
    Chen, C.-Y.; Chang, J.-H.; Chiang, K.-M.; Lin, H.-L.; Hsiao, S.-Y.; Lin, H.-W. Perovskite photovoltaics for dim-light applications. Adv. Funct. Mater. 2015, 25, 7064–7070.CrossRefGoogle Scholar
  44. [44]
    Agresti, A.; Pescetelli, S.; Cinà, L.; Konios, D.; Kakavelakis, G.; Kymakis, E.; Di Carlo, A. Efficiency and stability enhancement in perovskite solar cells by inserting lithiumneutralized graphene oxide as electron transporting layer. Adv. Funct. Mater. 2016, 26, 2686–2694.CrossRefGoogle Scholar
  45. [45]
    Fakharuddin, A.; Di Giacomo, F.; Ahmed, I.; Wali, Q.; Brown, T. M.; Jose, R. Role of morphology and crystallinity of nanorod and planar electron transport layers on the performance and long term durability of perovskite solar cells. J. Power Sources 2015, 283, 61–67.CrossRefGoogle Scholar
  46. [46]
    Malinkiewicz, O.; Yella, A.; Lee, Y. H.; Espallargas, G. M.; Graetzel, M.; Nazeeruddin, M. K.; Bolink, H. J. Perovskite solar cells employing organic charge-transport layers. Nat. Photonics 2014, 8, 128–132.CrossRefGoogle Scholar
  47. [47]
    Pascoe, A. R.; Yang, M. J.; Kopidakis, N.; Zhu, K.; Reese, M. O.; Rumbles, G.; Fekete, M.; Duffy, N. W.; Cheng, Y.-B. Planar versus mesoscopic perovskite microstructures: The influence of CH3NH3PbI3 morphology on charge transport and recombination dynamics. Nano Energy 2016, 22, 439–452.CrossRefGoogle Scholar
  48. [48]
    Wetzelaer, G.-J. A. H.; Scheepers, M.; Sempere, A. M.; Momblona, C.; Ávila, J.; Bolink, H. J. Trap-assisted nonradiative recombination in organic–inorganic perovskite solar cells. Adv. Mater. 2015, 27, 1837–1841.CrossRefGoogle Scholar
  49. [49]
    Zaban, A.; Greenshtein, M.; Bisquert, J. Determination of the electron lifetime in nanocrystalline dye solar cells by open-circuit voltage decay measurements. ChemPhysChem 2003, 4, 859–864.CrossRefGoogle Scholar
  50. [50]
    Huang, X. K.; Hu, Z. Y.; Xu, J.; Wang, P.; Wang, L. M.; Zhang, J.; Zhu, Y. J. Low-temperature processed SnO2 compact layer by incorporating TiO2 layer toward efficient planar heterojunction perovskite solar cells. Solar Energy Mater. Solar Cells 2017, 164, 87–92.CrossRefGoogle Scholar
  51. [51]
    Lee, Y. H.; Luo, J. S.; Son, M. K.; Gao, P.; Cho, K. T.; Seo, J.; Zakeeruddin, S. M.; Grätzel, M.; Nazeeruddin, M. K. Enhanced charge collection with passivation layers in perovskite solar cells. Adv. Mater. 2016, 28, 3966–3972.CrossRefGoogle Scholar
  52. [52]
    Heo, J. H.; You, M. S.; Chang, M. H.; Yin, W.; Ahn, T. K.; Lee, S.; Sung, S.J.; Kim, D. H.; lm, H. S. Hysteresis-less mesoscopic CH3NH3PbI3 perovskite hybrid solar cells by introduction of Li-treated TiO2 electrode. Nano Energy 2015, 15, 530–539.CrossRefGoogle Scholar
  53. [53]
    Li, Y. W.; Zhao, Y.; Chen, Q.; Yang, Y.; Liu, Y. S.; Hong, Z. R.; Liu, Z. H.; Hsieh, Y. T.; Meng, L.; Li, Y. F. et al. Multifunctional fullerene derivative for interface engineering in perovskite solar cells. J. Am. Chem. Soc. 2015, 137, 15540–15547.CrossRefGoogle Scholar
  54. [54]
    Agresti, A.; Pescetelli, S.; Palma, A. L.; Del Rio Castillo, A. E.; Konios, D.; Kakavelakis, G.; Razza, S.; Cinà, L.; Kymakis, E.; Bonaccorso, F. et al. Graphene interface engineering for perovskite solar modules: 12.6% power conversion efficiency over 50 cm2 active area. ACS Energy Lett. 2017, 2, 279–287.CrossRefGoogle Scholar
  55. [55]
    Razza, S.; Di Giacomo, F.; Matteocci, F.; Cinà, L.; Palma, A. L.; Casaluci, S.; Cameron, P.; D’Epifanio, A.; Licoccia, S.; Reale, A. et al. Perovskite solar cells and large area modules (100 cm2) based on an air flow-assisted PbI2 blade coating deposition process. J. Power Sources 2015, 277, 286–291.CrossRefGoogle Scholar
  56. [56]
    Zhu, L. F.; Shi, J. J.; Li, D. M.; Meng, Q. B. Effect of mesoporous TiO2 layer thickness on the cell performance of perovskite solar cells. Acta Chim. Sinica 2015, 73, 261–266.CrossRefGoogle Scholar
  57. [57]
    Leijtens, T.; Lauber, B.; Eperon, G. E.; Stranks, S. D.; Snaith H. J. The importance of perovskite pore filling in organometal mixed halide sensitized TiO2-based solar cells. J. Phys. Chem. Lett. 2014, 5, 1096–1102.CrossRefGoogle Scholar
  58. [58]
    Choi, Y. C.; Lee, S. W.; Kim, D.-H. Antisolvent-assisted powder engineering for controlled growth of hybrid CH3NH3PbI3 perovskite thin films. APL Mater. 2017, 5, 026101.CrossRefGoogle Scholar
  59. [59]
    Mincuzzi, G.; Palma, A.; Di Carlo, A.; Brown, T. M. Laser processing in the manufacture of dye-sensitized and perovskite solar cell technologies. ChemElectroChem 2016, 3, 9–30CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Janardan Dagar
    • 1
  • Sergio Castro-Hermosa
    • 1
  • Matteo Gasbarri
    • 1
  • Alessandro L. Palma
    • 1
  • Lucio Cina
    • 2
  • Fabio Matteocci
    • 1
  • Emanuele Calabrò
    • 1
  • Aldo Di Carlo
    • 1
    • 3
  • Thomas M. Brown
    • 1
  1. 1.CHOSE (Centre for Hybrid and Organic Solar Energy), Department of Electronic EngineeringUniversity of Rome Tor VergataRomeItaly
  2. 2.Cicci Research srlGrossetoItaly
  3. 3.Department of semiconductor electronics and device physicsNational University of Science and Technology “MISiS”MoscowRussia

Personalised recommendations