Skip to main content
Log in

Antarctic thermolabile uracil-DNA-glycosylase-supplemented multiple cross displacement amplification using a label-based nanoparticle lateral flow biosensor for the simultaneous detection of nucleic acid sequences and elimination of carryover contamination

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Here, we report a novel and universal methodology, termed “Antarctic thermolabile uracil-DNA-glycosylase (AUDG)-supplemented nucleic acid amplification techniques (NAAs) using a labeled-based nanoparticle lateral flow biosensor (LFB)” (AUDG-NAAs-LFB), which merges enzymatic (AUDG) digestion of contaminant amplicons with different nucleic acid amplification techniques (NAAs), and uses a lateral flow biosensor (LFB) for the rapid and visual confirmation of the presence of a target nucleic acid sequence. AUDG-NNAs-LFB is a one-pot, closedvessel assay, that can effectively eliminate false-positive signals arising from either carryover contaminants or the interaction between labeled primers. A new LFB was devised for detecting three targets (two amplicons generated from amplification of target sequences, and a chromatography control), without the need for probe-hybridization or additional incubation steps. As a proof of concept, multiple cross displacement amplification (MCDA), which is a specific, sensitive, and rapid isothermal amplification method, was selected as the model amplification technique to demonstrate the feasibility of AUDG-NAAs-LFB. As a result, we demonstrate the applicability of the AUDG-MCDA-LFB method for simultaneously detecting high-risk human papillomaviruses genotypes 16 and 18, which are the most and second-most prevalent strains of the virus reported in women worldwide. We also confirm the principle behind the AUDG-MCDA-LFB assay and validate its sensitivity, reproducibility, and specificity using serial dilutions of the type-specific plasmids, as well as clinical samples. This proof-of-concept method (AUDG-MCDA-LFB) can be easily reconfigured to detect various nucleic acid sequences by redesigning the specific MCDA primers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhao, Y. X.; Chen, F.; Li, Q.; Wang, L. H.; Fan, C. H. Isothermal amplification of nucleic acids. Chem. Rev. 2015, 115, 12491–12545.

    Article  Google Scholar 

  2. Sedighi, A.; Oberc, C.; Whitehall, V.; Li, P. C. H. NanoHDA: A nanoparticle-assisted isothermal amplification technique for genotyping assays. Nano Res. 2017, 10, 12–21.

    Article  Google Scholar 

  3. Kim, J.; Easley, C. J. Isothermal DNA amplification in bioanalysis: Strategies and applications. Bioanalysis 2011, 3, 227–239.

    Article  Google Scholar 

  4. Wang, Y.; Wang, Y.; Ma, A. J.; Li, D. X.; Luo, L. J.; Liu, D. X.; Jin, D.; Liu, K.; Ye, C. Y. Rapid and sensitive isothermal detection of nucleic-acid sequence by multiple cross displacement amplification. Sci. Rep. 2015, 5, 11902.

    Article  Google Scholar 

  5. Li, J.; Macdonald, J. Multiplexed lateral flow biosensors: Technological advances for radically improving point-of-care diagnoses. Biosens. Bioelectron. 2016, 83, 177–192.

    Article  Google Scholar 

  6. Wang, Y.; Wang, Y.; Lan, R.; Xu, H.; Ma, A.; Li, D.; Dai, H.; Yuan, X.; Xu, J.; Ye, C. Multiple endonuclease restriction real-time loop-mediated isothermal amplification: A novel analytically rapid, sensitive, multiplex loop-mediated isothermal amplification detection technique. J. Mol. Diagn. 2015, 17, 392–401.

    Article  Google Scholar 

  7. Rivas, L.; de la Escosura-Muñiz, A.; Serrano, L.; Altet, L.; Francino, O.; Sánchez, A.; Merkoçi, A. Triple lines gold nanoparticle-based lateral flow assay for enhanced and simultaneous detection of Leishmania DNA and endogenous control. Nano Res. 2015, 8, 3704–3714.

    Article  Google Scholar 

  8. Chua, A.; Yean, C. Y.; Ravichandran, M.; Lim, B.; Lalitha, P. A rapid DNA biosensor for the molecular diagnosis of infectious disease. Biosens. Bioelectron. 2011, 26, 3825–3831.

    Article  Google Scholar 

  9. Wang, Y.; Wang, Y.; Zhang, L.; Xu, J. G.; Ye, C. Y. Visual and multiplex detection of nucleic acid sequence by multiple cross displacement amplification coupled with gold nanoparticle-based lateral flow biosensor. Sensors Actuat. B: Chem. 2017, 241, 1283–1293.

    Article  Google Scholar 

  10. Wang, Y.; Li, H.; Wang, Y.; Li, H.; Luo, L.; Xu, J.; Ye, C. Development of multiple cross displacement amplification label-based gold nanoparticles lateral flow biosensor for detection of Listeria monocytogenes. Int. J. Nanomed. 2017, 12, 473–486.

    Article  Google Scholar 

  11. Wang, Y.; Li, H.; Wang, Y.; Zhang, L.; Xu, J. G.; Ye, C. Y. Loop-mediated isothermal amplification label-based gold nanoparticles lateral flow biosensor for detection of Enterococcus faecalis and Staphylococcus aureus. Front Microbiol. 2017, 8, 192.

    Google Scholar 

  12. Cui, L. B.; Ge, Y. Y.; Qi, X.; Xu, G. L.; Li, H. J.; Zhao, K. C.; Wu, B.; Shi, Z. Y.; Guo, X. L.; Hu, L. et al. Detection of severe fever with thrombocytopenia syndrome virus by reverse transcription-cross-priming amplification coupled with vertical flow visualization. J. Clin. Microbiol. 2012, 50, 3881–3885.

    Article  Google Scholar 

  13. Saetiew, C.; Limpaiboon, T.; Jearanaikoon, P.; Daduang, S.; Pientong, C.; Kerdsin, A.; Daduang, J. Rapid detection of the most common high-risk human papillomaviruses by loop-mediated isothermal amplification. J. Virol. Methods 2011, 178, 22–30.

    Article  Google Scholar 

  14. Hagiwara, M.; Sasaki, H.; Matsuo, K.; Honda, M.; Kawase, M.; Nakagawa, H. Loop-mediated isothermal amplification method for detection of human papillomavirus type 6, 11, 16, and 18. J. Med. Virol. 2007, 79, 605–615.

    Article  Google Scholar 

  15. Wang, Y.; Wang, Y.; Zhang, L.; Liu, D. X.; Luo, L. J.; Li, H.; Cao, X. L.; Liu, K.; Xu, J. G.; Ye, C. Y. Multiplex, rapid, and sensitive isothermal detection of nucleic-acid sequence by endonuclease restriction-mediated real-time multiple cross displacement amplification. Front Microbiol. 2016, 7, 753.

    Google Scholar 

  16. van den Brule, A. J. C.; Pol, R.; Fransen-Daalmeijer, N.; Schouls, L. M.; Meijer, C. J. L. M.; Snijders, P. J. F. GP5+/6+ PCR followed by reverse line blot analysis enables rapid and high-throughput identification of human papillomavirus genotypes. J. Clin. Microbiol. 2002, 40, 779–787.

    Article  Google Scholar 

  17. Le Rouzic, E. Contamination-pipetting: Relative efficiency of filter tips compared to Microman® positive displacement pipette. Nat. Methods 2006, 3. DOI: 10.1038/nmeth887.

  18. Barhate, R. S.; Ramakrishna, S. Nanofibrous filtering media: Filtration problems and solutions from tiny materials. J. Membrane Sci. 2007, 296, 1–8.

    Article  Google Scholar 

  19. Quesada-González, D.; Merkoçi, A. Nanoparticle-based lateral flow biosensors. Biosens. Bioelectron. 2015, 73, 47–63.

    Article  Google Scholar 

  20. Hu, X. X.; Wang, Y. Q.; Liu, H. Y.; Wang, J.; Tan, Y. N.; Wang, F. B.; Yuan, Q.; Tan, W. H. Naked eye detection of multiple tumor-related mRNAs from patients with photoniccrystal micropattern supported dual-modal upconversion bioprobes. Chem. Sci. 2017, 8, 466–472.

    Article  Google Scholar 

  21. Xu, Y.; Liu, Y. H.; Wu, Y.; Xia, X. H.; Liao, Y. Q.; Li, Q. G. Fluorescent probe-based lateral flow assay for multiplex nucleic acid detection. Anal. Chem. 2014, 86, 5611–5614.

    Article  Google Scholar 

  22. Li, B. R.; Chen, C. C.; Kumar, U. R.; Chen, Y. T. Advances in nanowire transistors for biological analysis and cellular investigation. Analyst 2014, 139, 1589–1608.

    Article  Google Scholar 

  23. Hui, W. L.; Zhang, S. N.; Zhang, C.; Wan, Y. S.; Zhu, J. L.; Zhao, G.; Wu, S. D.; Xi, D. J.; Zhang, Q. L.; Li, N. N. et al. A novel lateral flow assay based on GoldMag nanoparticles and its clinical applications for genotyping of MTHFR C677T polymorphisms. Nanoscale 2016, 8, 3579–3587.

    Article  Google Scholar 

  24. Zhang, X. Z.; Lowe, S. B.; Gooding, J. J. Brief review of monitoring methods for loop-mediated isothermal amplification (LAMP). Biosens. Bioelectron. 2014, 61, 491–499.

    Article  Google Scholar 

  25. Longo, M. C.; Berninger, M. S.; Hartley, J. L. Use of uracil DNA glycosylase to control carry-over contamination in polymerase chain reactions. Gene 1990, 93, 125–128.

    Article  Google Scholar 

  26. Borst, A.; Box, A. T. A.; Fluit, A. C. False-positive results and contamination in nucleic acid amplification assays: Suggestions for a prevent and destroy strategy. Eur. J. Clin. Microbiol. Infect. Dis. 2004, 23, 289–299.

    Article  Google Scholar 

  27. Aslanzadeh, J. Preventing PCR amplification carryover contamination in a clinical laboratory. Ann. Clin. Lab. Sci. 2004, 34, 389–396.

    Google Scholar 

  28. Kil, E. J.; Kim, S.; Lee, Y. J.; Kang, E. H.; Lee, M.; Cho, S. H.; Kim, M. K.; Lee, K. Y.; Heo, N. Y.; Choi, H. S. et al. Advanced loop-mediated isothermal amplification method for sensitive and specific detection of Tomato chlorosis virus using a uracil DNA glycosylase to control carry-over contamination. J. Virol. Methods 2015, 213, 68–74.

    Article  Google Scholar 

  29. Tomita, N.; Mori, Y.; Kanda, H.; Notomi, T. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat. Protoc. 2008, 3, 877–882.

    Article  Google Scholar 

  30. Goto, M.; Honda, E.; Ogura, A.; Nomoto, A.; Hanaki, K. Colorimetric detection of loop-mediated isothermal amplification reaction by using hydroxy naphthol blue. Biotechniques 2009, 46, 167–172.

    Article  Google Scholar 

  31. Wang, H.-C.; Kasper, G. Filtration efficiency of nanometersize aerosol particles. J. Aeros. Sci. 1991, 22, 31–41.

    Article  Google Scholar 

  32. Wang, C. S.; Otani, Y. Removal of nanoparticles from gas streams by fibrous filters: A review. Ind. Eng. Chem. Res. 2013, 52, 5–17.

    Article  Google Scholar 

  33. Pang, J.; Modlin, J.; Yolken, R. Use of modified nucleotides and uracil-DNA glycosylase (UNG) for the control of contamination in the PCR-based amplification of RNA. Mol. Cell. Probes 1992, 6, 251–256.

    Article  Google Scholar 

  34. Rys, P. N.; Persing, D. H. Preventing false positives: Quantitative evaluation of three protocols for inactivation of polymerase chain reaction amplification products. J. Clin. Microbiol. 1993, 31, 2356–2360.

    Google Scholar 

  35. Sarkar, G.; Sommer, S. S. Parameters affecting susceptibility of PCR contamination to UV inactivation. Biotechniques 1991, 10, 590–594.

    Google Scholar 

  36. Nimesh, M.; Joon, D.; Varma-Basil, M.; Saluja, D. Development and clinical evaluation of sdaA loop-mediated isothermal amplification assay for detection of Mycobacterium tuberculosis with an approach to prevent carryover contamination. J. Clin. Microbiol. 2014, 52, 2662–2664.

    Article  Google Scholar 

  37. Hu, Y. Regulatory concern of polymerase chain reaction (PCR) carryover contamination. In Polymerase Chain Reaction for Biomedical Applications. A. Samadikuchaksaraei, Ed.; InTech: Rijeka, 2016.

    Google Scholar 

Download references

Acknowledgements

We acknowledge the financial supports of the grants (Mega Project of Research on the Prevention and Control of HIV/AIDS, Viral Hepatitis Infectious Diseases 2013ZX10004-101 to Changyun Ye) from the Ministry of Science and Technology, People’s Republic of China, and grant (No. 2015SKLID507 to Changyun Ye) from State Key Laboratory of Infectious Disease Prevention and Control, China CDC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changyun Ye.

Electronic supplementary material

12274_2017_1893_MOESM1_ESM.pdf

Antarctic thermolabile uracil-DNA-glycosylase-supplemented multiple cross displacement amplification using a label-based nanoparticle lateral flow biosensor for the simultaneous detection of nucleic acid sequences and elimination of carryover contamination

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Li, H., Wang, Y. et al. Antarctic thermolabile uracil-DNA-glycosylase-supplemented multiple cross displacement amplification using a label-based nanoparticle lateral flow biosensor for the simultaneous detection of nucleic acid sequences and elimination of carryover contamination. Nano Res. 11, 2632–2647 (2018). https://doi.org/10.1007/s12274-017-1893-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1893-z

Keywords

Navigation