Reversible hydrogels with tunable mechanical properties for optically controlling cell migration

Research Article
  • 246 Downloads

Abstract

Synthetic hydrogels are widely used as biomimetic in vitro model systems to understand how cells respond to complex microenvironments. The mechanical properties of hydrogels are deterministic for many cellular behaviors, including cell migration, spreading, and differentiation. However, it remains a major challenge to engineer hydrogels that recapture the dynamic mechanical properties of native extracellular matrices. Here, we provide a new hydrogel platform with spatiotemporally tunable mechanical properties to assay and define cellular behaviors under light. The change in the mechanical properties of the hydrogel is effected by a photo-induced switch of the cross-linker fluorescent protein, Dronpa145N, between the tetrameric and monomeric states, which causes minimal changes to the chemical properties of the hydrogel. The mechanical properties can be rapidly and reversibly tuned for multiple cycles using visible light, as confirmed by rheological measurements and atomic force microscopybased nano-indentation. We further demonstrated real-time and reversible modulation of cell migration behaviors on the hydrogels through photo-induced stiffness switching, with minimal invasion to the cultured cells. Hydrogels with a programmable mechanical history and a spatially defined mechanical hierarchy might serve as an ideal model system to better understand complex cellular functions.

Keywords

Dronpa photo-responsive hydrogel mechanical properties cell migration artificial extracellular matrix 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank Dr. W. Meng for his initial experiments on this project. This work is funded by the National Natural Science Foundation of China (Nos. 21522402, 21474003, 91427304, 11372279, 11572285, 11674153, 11374148, and 11334004), the Fundamental Research Funds for the Central Universities (Nos. 020414380070 and 020414380058), the National Basic Research Program of China (Nos. 2012CB921801 and 2013CB834100) and the National High-tech R&D Program of China (No. 2015AA020941).

Supplementary material

12274_2017_1890_MOESM1_ESM.pdf (1.8 mb)
Reversible hydrogels with tunable mechanical properties for optically controlling cell migration
12274_2017_1890_MOESM2_ESM.avi (378 kb)
Supplementary material, approximately 377 KB.
12274_2017_1890_MOESM3_ESM.avi (490 kb)
Supplementary material, approximately 489 KB.

References

  1. [1]
    Kopeček, J.; Yang, J. Y. Smart self-assembled hybrid hydrogel biomaterials. Angew. Chem., Int. Ed. 2012, 51, 7396–7417.CrossRefGoogle Scholar
  2. [2]
    Ahmed, E. M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 2015, 6, 105–121.CrossRefGoogle Scholar
  3. [3]
    Wang, H. M.; Shi, Y.; Wang, L.; Yang, Z. M. Recombinant proteins as cross-linkers for hydrogelations. Chem. Soc. Rev. 2013, 42, 891–901.CrossRefGoogle Scholar
  4. [4]
    Langer, R.; Tirrell, D. A. Designing materials for biology and medicine. Nature 2004, 428, 487–492.CrossRefGoogle Scholar
  5. [5]
    Lutolf, M. P.; Hubbell, J. A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 2005, 23, 47–55.CrossRefGoogle Scholar
  6. [6]
    Peppas, N. A.; Hilt, J. Z.; Khademhosseini, A.; Langer, R. Hydrogels in biology and medicine: From molecular principles to bionanotechnology. Adv. Mater. 2006, 18, 1345–1360.CrossRefGoogle Scholar
  7. [7]
    Seliktar, D. Designing cell-compatible hydrogels for biomedical applications. Science 2012, 336, 1124–1128.CrossRefGoogle Scholar
  8. [8]
    Slaughter, B. V.; Khurshid, S. S.; Fisher, O. Z.; Khademhosseini, A.; Peppas, N. A. Hydrogels in regenerative medicine. Adv. Mater. 2009, 21, 3307–3329.CrossRefGoogle Scholar
  9. [9]
    Lai, W. F.; He, Z. D. Design and fabrication of hydrogelbased nanoparticulate systems for in vivo drug delivery. J. Control. Release 2016, 243, 269–282.CrossRefGoogle Scholar
  10. [10]
    Du, X. W.; Zhou, J.; Shi, J. F.; Xu, B. Supramolecular hydrogelators and hydrogels: From soft matter to molecular biomaterials. Chem. Rev. 2015, 115, 13165–13307.CrossRefGoogle Scholar
  11. [11]
    Caliari, S. R.; Burdick, J. A. A practical guide to hydrogels for cell culture. Nat. Methods 2016, 13, 405–414.CrossRefGoogle Scholar
  12. [12]
    Wang, H. Y.; Heilshorn, S. C. Adaptable hydrogel networks with reversible linkages for tissue engineering. Adv. Mater. 2015, 27, 3717–3736.CrossRefGoogle Scholar
  13. [13]
    Cushing, M. C.; Anseth, K. S. Materials science. Hydrogel cell cultures. Science 2007, 316, 1133–1134.Google Scholar
  14. [14]
    Engler, A. J.; Sen, S.; Sweeney, H. L.; Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 2006, 126, 677–689.CrossRefGoogle Scholar
  15. [15]
    Guilak, F.; Cohen, D. M.; Estes, B. T.; Gimble, J. M.; Liedtke, W.; Chen, C. S. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 2009, 5, 17–26.CrossRefGoogle Scholar
  16. [16]
    Das, R. K.; Gocheva, V.; Hammink, R.; Zouani, O. F.; Rowan, A. E. Stress-stiffening-mediated stem-cell commitment switch in soft responsive hydrogels. Nat. Mater. 2016, 15, 318–325.CrossRefGoogle Scholar
  17. [17]
    Huebsch, N.; Lippens, E.; Lee, K.; Mehta, M.; Koshy, S. T.; Darnell, M. C.; Desai, R. M.; Madl, C. M.; Xu, M.; Zhao, X. H. et al. Matrix elasticity of void-forming hydrogels controls transplanted-stem-cell-mediated bone formation. Nat. Mater. 2015, 14, 1269–1277.CrossRefGoogle Scholar
  18. [18]
    Murphy, W. L.; McDevitt, T. C.; Engler, A. J. Materials as stem cell regulators. Nat. Mater. 2014, 13, 547–557.CrossRefGoogle Scholar
  19. [19]
    Yang, C.; Tibbitt, M. W.; Basta, L.; Anseth, K. S. Mechanical memory and dosing influence stem cell fate. Nat. Mater. 2014, 13, 645–652.CrossRefGoogle Scholar
  20. [20]
    Lutolf, M. P.; Gilbert, P. M.; Blau, H. M. Designing materials to direct stem-cell fate. Nature 2009, 462, 433–441.CrossRefGoogle Scholar
  21. [21]
    Gilbert, P. M.; Havenstrite, K. L.; Magnusson, K. E. G.; Sacco, A.; Leonardi, N. A.; Kraft, P.; Nguyen, N. K.; Thrun, S.; Lutolf, M. P.; Blau, H. M. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 2010, 329, 1078–1081.CrossRefGoogle Scholar
  22. [22]
    Guvendiren, M.; Burdick, J. A. Stiffening hydrogels to probe short- and long-term cellular responses to dynamic mechanics. Nat. Commun. 2012, 3, 792.CrossRefGoogle Scholar
  23. [23]
    Rosales, A. M.; Anseth, K. S. The design of reversible hydrogels to capture extracellular matrix dynamics. Nat. Rev. Mater. 2016, 1, 15012.CrossRefGoogle Scholar
  24. [24]
    Murphy, W. L.; Dillmore, W. S.; Modica, J.; Mrksich, M. Dynamic hydrogels: Translating a protein conformational change into macroscopic motion. Angew. Chem., Int. Ed. 2007, 46, 3066–3069.CrossRefGoogle Scholar
  25. [25]
    Yuan, W. W.; Yang, J. Y.; Kopečková, P.; Kopeček, J. Smart hydrogels containing adenylate kinase: Translating substrate recognition into macroscopic motion. J. Am. Chem. Soc. 2008, 130, 15760–15761.CrossRefGoogle Scholar
  26. [26]
    Patterson, J.; Hubbell, J. A. Enhanced proteolytic degradation of molecularly engineered PEG hydrogels in response to MMP-1 and MMP-2. Biomaterials 2010, 31, 7836–7845.CrossRefGoogle Scholar
  27. [27]
    Abdeen, A. A.; Lee, J.; Bharadwaj, N. A.; Ewoldt, R. H.; Kilian, K. A. Temporal modulation of stem cell activity using magnetoactive hydrogels. Adv. Healthc. Mater. 2016, 5, 2536–2544.CrossRefGoogle Scholar
  28. [28]
    Yoshikawa, H. Y.; Rossetti, F. F.; Kaufmann, S.; Kaindl, T.; Madsen, J.; Engel, U.; Lewis, A. L.; Armes, S. P.; Tanaka, M. Quantitative evaluation of mechanosensing of cells on dynamically tunable hydrogels. J. Am. Chem. Soc. 2011, 133, 1367–1374.CrossRefGoogle Scholar
  29. [29]
    Davis, K. A.; Burke, K. A.; Mather, P. T.; Henderson, J. H. Dynamic cell behavior on shape memory polymer substrates. Biomaterials 2011, 32, 2285–2293.CrossRefGoogle Scholar
  30. [30]
    Gillette, B. M.; Jensen, J. A.; Wang, M. X.; Tchao, J.; Sia, S. K. Dynamic hydrogels: Switching of 3D microenvironments using two-component naturally derived extracellular matrices. Adv. Mater. 2010, 22, 686–691.CrossRefGoogle Scholar
  31. [31]
    Stowers, R. S.; Allen, S. C.; Suggs, L. J. Dynamic phototuning of 3D hydrogel stiffness. Proc. Natl. Acad. Sci. USA 2015, 112, 1953–1958.CrossRefGoogle Scholar
  32. [32]
    Shih, H.; Lin, C.-C. Tuning stiffness of cell-laden hydrogel via host-guest interactions. J. Mater. Chem. B 2016, 4, 4969–4974.CrossRefGoogle Scholar
  33. [33]
    Burdick, J. A.; Murphy, W. L. Moving from static to dynamic complexity in hydrogel design. Nat. Commun. 2012, 3, 1269.CrossRefGoogle Scholar
  34. [34]
    Gu, Z.; Tang, Y. Enzyme-assisted photolithography for spatial functionalization of hydrogels. Lab Chip 2010, 10, 1946–1951.CrossRefGoogle Scholar
  35. [35]
    Rosales, A. M.; Mabry, K. M.; Nehls, E. M.; Anseth, K. S. Photoresponsive elastic properties of azobenzene-containing poly(ethylene-glycol)-based hydrogels. Biomacromolecules 2015, 16, 798–806.CrossRefGoogle Scholar
  36. [36]
    Kloxin, A. M.; Kasko, A. M.; Salinas, C. N.; Anseth, K. S. Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 2009, 324, 59–63.CrossRefGoogle Scholar
  37. [37]
    DeForest, C. A.; Anseth, K. S. Cytocompatible click-based hydrogels with dynamically tunable properties through orthogonal photoconjugation and photocleavage reactions. Nat. Chem. 2011, 3, 925–931.CrossRefGoogle Scholar
  38. [38]
    Rosales, A. M.; Vega, S. L.; DelRio, F. W.; Burdick, J. A.; Anseth, K. S. Hydrogels with reversible mechanics to probe dynamic cell microenvironments. Angew. Chem., Int. Ed. 2017, 56, 12132–12136.CrossRefGoogle Scholar
  39. [39]
    Zhang, X. L.; Dong, C. M.; Huang, W. Y.; Wang, H. M.; Wang, L.; Ding, D.; Zhou, H.; Long, J. F.; Wang, T. L.; Yang, Z. M. Rational design of a photo-responsive UVR8-derived protein and a self-assembling peptide-protein conjugate for responsive hydrogel formation. Nanoscale 2015, 7, 16666–16670.CrossRefGoogle Scholar
  40. [40]
    Wang, R.; Yang, Z. G.; Luo, J. R.; Hsing, I. M.; Sun, F. B12-dependent photoresponsive protein hydrogels for controlled stem cell/protein release. Proc. Natl. Acad. Sci. USA 2017, 114, 5912–5917.CrossRefGoogle Scholar
  41. [41]
    Zhou, X. X.; Chung, H. K.; Lam, A. J.; Lin, M. Z. Optical control of protein activity by fluorescent protein domains. Science 2012, 338, 810–814.CrossRefGoogle Scholar
  42. [42]
    Warren, M. M.; Kaucikas, M.; Fitzpatrick, A.; Champion, P.; Timothy, S. J.; van Thor, J. J. Ground-state proton transfer in the photoswitching reactions of the fluorescent protein Dronpa. Nat. Commun. 2013, 4, 1461.CrossRefGoogle Scholar
  43. [43]
    Phelps, E. A.; Enemchukwu, N. O.; Fiore, V. F.; Sy, J. C.; Murthy, N.; Sulchek, T. A.; Barker, T. H.; Garcia, A. J. Maleimide cross-linked bioactive PEG hydrogel exhibits improved reaction kinetics and cross-linking for cell encapsulation and in situ delivery. Adv. Mater. 2012, 24, 64–70.CrossRefGoogle Scholar
  44. [44]
    Grindy, S. C.; Learsch, R.; Mozhdehi, D.; Cheng, J.; Barrett, D. G.; Guan, Z. B.; Messersmith, P. B.; Holten- Andersen, N. Control of hierarchical polymer mechanics with bioinspired metal-coordination dynamics. Nat. Mater. 2015, 14, 1210–1216.CrossRefGoogle Scholar
  45. [45]
    Justus, C. R.; Leffler, N.; Ruiz-Echevarria, M.; Yang, L. V. In vitro cell migration and invasion assays. J. Vis. Exp. 2014, e51046.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, and Department of PhysicsNanjing UniversityNanjingChina
  2. 2.Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
  3. 3.Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and EngineeringNanjing University of Information Science & TechnologyNanjingChina
  4. 4.Department of Chemical and Biomolecular Engineering, Division of BioMedical Engineering, and Center for Systems Biology & Human HealthThe Hong Kong University of Science and TechnologyHong KongChina

Personalised recommendations