Advertisement

Nano Research

, Volume 11, Issue 5, pp 2523–2531 | Cite as

InP/GaInP nanowire tunnel diodes

  • Xulu Zeng
  • Gaute Otnes
  • Magnus Heurlin
  • Renato T. Mourão
  • Magnus T. Borgström
Research Article

Abstract

Semiconductor nanowire (NW) solar cells with a single p-n junction have exhibited efficiency comparable to that of their planar counterparts with a substantial reduction in material consumption. Tandem geometry is a path toward the fabrication of devices with even higher efficiencies, for which a key step is the fabrication of tunnel (Esaki) diodes within NWs with the correct diameter, pitch, and material combination for maximized efficiency. InP/GaInP and GaInP/InP NW tunnel diodes with band gap combinations corresponding to high-efficiency solar energy harvesting were fabricated and their electrical characteristics and material properties were compared. Four different configurations, with respect to material composition and doping, were investigated. The NW arrays were grown with metal–organic vapor-phase epitaxy from Au particles by use of nano-imprint lithography, metal evaporation and lift-off. Electrical measurements showed that the NWs behave as tunnel diodes in both InP (bottom)/GaInP (top) and GaInP (bottom)/InP (top) configurations, exhibiting a maximum peak current density of 25 A/cm2, and maximum peak to valley current ratio of 2.5 at room temperature. The realization of NW tunnel diodes in both InP/GaInP and GaInP/InP configurations represent an opportunity for the use of NW tandem solar cells, whose efficiency is independent of the growth order of the different materials, increasing the flexibility regarding dopant incorporation polarity.

Keywords

nanowire tunnel diode InP GaInP tandem junction solar cell 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank Dr. Enrique Barrigón and Dr. Pyry Kivisaari for helpful discussions during the course of this work. We also thank Dr. Ingvar Åberg and co-workers at SolVoltaics AB, for helping with EBIC measurements. The research leading to these results was performed within NanoLund at Lund University and supported by the Crafoord Foundation, the Swedish Research Council, the Swedish Energy Agency, the Coordination for the Improvement of Higher Education Personnel (CAPES-Brazil), the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 641023 (Nano-Tandem), and the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7-People- 2013-ITN) under REA grant agreement No. 608153, PhD4Energy. This publication reflects only the author’s views and the funding agency is not responsible for any use that may be made of the information it contains.

Supplementary material

12274_2017_1877_MOESM1_ESM.pdf (831 kb)
InP/GaInP nanowire tunnel diodes

References

  1. [1]
    Hiruma, K.; Katsuyama, T.; Ogawa, K.; Koguchi, M.; Kakibayashi, H.; Morgan, G. P. Quantum size microcrystals grown using organometallic vapor phase epitaxy. Appl. Phys. Lett. 1991, 59, 431–433.CrossRefGoogle Scholar
  2. [2]
    Gudiksen, M. S.; Lauhon, L. J.; Wang, J. F.; Smith, D. C.; Lieber, C. M. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 2002, 415, 617–620.CrossRefGoogle Scholar
  3. [3]
    Samuelson, L.; Björk, M. T.; Deppert, K.; Larsson, M.; Ohlsson, B. J.; Panev, N.; Persson, A. I.; Sköld, N.; Thelander, C.; Wallenberg, L. R. Semiconductor nanowires for novel one-dimensional devices. Physica E Low-dimens. Syst. Nanostruct. 2004, 21, 560–567.CrossRefGoogle Scholar
  4. [4]
    Heurlin, M.; Magnusson, M. H.; Lindgren, D.; Ek, M.; Wallenberg, L. R.; Deppert, K.; Samuelson, L. Continuous gas-phase synthesis of nanowires with tunable properties. Nature 2012, 492, 90–94.CrossRefGoogle Scholar
  5. [5]
    Anttu, N.; Xu, H. Q. Coupling of light into nanowire arrays and subsequent absorption. J. Nanosci. Nanotechnol. 2010, 10, 7183–7187.CrossRefGoogle Scholar
  6. [6]
    Borgström, M. T.; Wallentin, J.; Heurlin, M.; Fält, S.; Wickert, P.; Leene, J.; Magnusson, M. H.; Deppert, K.; Samuelson, L. Nanowires with promise for photovoltaics. IEEE J. Sel. Top. Quantum Electron. 2011, 17, 1050–1061.CrossRefGoogle Scholar
  7. [7]
    Otnes, G.; Borgström, M. T. Towards high efficiency nanowire solar cells. Nanotoday 2017, 12, 31–45.CrossRefGoogle Scholar
  8. [8]
    Wallentin, J.; Anttu, N.; Asoli, D.; Huffman, M.; Åberg, I.; Magnusson, M. H.; Siefer, G.; Fuss-Kailuweit, P.; Dimroth, F.; Witzigmann, B. et al. InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit. Science 2013, 339, 1057–1060.CrossRefGoogle Scholar
  9. [9]
    Åberg, I.; Vescovi, G.; Asoli, D.; Naseem, U.; Gilboy, J. P.; Sundvall, C.; Dahlgren, A.; Svensson, K. E.; Anttu, N.; Björk, M. T. et al. A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun. IEEE J. Photovolt. 2016, 6, 185–190.CrossRefGoogle Scholar
  10. [10]
    van Dam, D.; van Hoof, N. J. J.; Cui, Y. C.; van Veldhoven, P. J.; Bakkers, E. P. A. M.; Rivas, J. G.; Haverkort, J. E. M. High-efficiency nanowire solar cells with omnidirectionally enhanced absorption due to self-aligned Indium-Tin-Oxide Mie scatterers. ACS Nano 2016, 10, 11414–11419.CrossRefGoogle Scholar
  11. [11]
    LaPierre, R. R.; Chia, A. C. E.; Gibson, S. J.; Haapamaki, C. M.; Boulanger, J.; Yee, R.; Kuyanov, P.; Zhang, J.; Tajik, N.; Jewell, N. et al. III–V nanowire photovoltaics: Review of design for high efficiency. Phys. Status Solidi RRL 2013, 7, 815–830.CrossRefGoogle Scholar
  12. [12]
    Heurlin, M.; Wickert, P.; Fält, S.; Borgström, M. T.; Deppert, K.; Samuelson, L.; Magusson, M. H. Axial InP nanowire tandem junction grown on a silicon substrate. Nano Lett. 2011, 11, 2028–2031.CrossRefGoogle Scholar
  13. [13]
    Kempa, T. J.; Tian, B. Z.; Kim, D. R.; Hu, J. S.; Zheng, X. L.; Lieber, C. M. Single and tandem axial p-i-n nanowire photovoltaic devices. Nano Lett. 2008, 8, 3456–3460.CrossRefGoogle Scholar
  14. [14]
    Yao, M. Q.; Cong, S.; Arab, S.; Huang, N. F.; Povinelli, M. L.; Cronin, S. B.; Dapkus, P. D.; Zhou, C. W. Tandem solar cells using GaAs nanowires on Si: Design, fabrication, and observation of voltage addition. Nano Lett. 2015, 15, 7217–7224.CrossRefGoogle Scholar
  15. [15]
    Dimroth, F. High-efficiency solar cells from III-V compound semiconductors. Phys. Stat. Sol. (c) 2006, 3, 373–379.CrossRefGoogle Scholar
  16. [16]
    Chen, Y.; Pistol, M. E.; Anttu, N. Design for strong absorption in a nanowire array tandem solar cell. Sci. Rep. 2016, 6, 32349.CrossRefGoogle Scholar
  17. [17]
    Esaki, L. New phenomenon in narrow germanium p-n junctions. Phys. Rev. 1958, 109, 603–604.CrossRefGoogle Scholar
  18. [18]
    Luque, A.; Hegedus, S. Handbook of Photovoltaic Science and Engineering; 2nd ed. John Wiley & Sons, Ltd.: Chichester, 2011.Google Scholar
  19. [19]
    Wallentin, J.; Persson, J. M.; Wagner, J. B.; Samuelson, L.; Deppert, K.; Borgström, M. T. High-performance single nanowire tunnel diodes. Nano Lett. 2010, 10, 974–979.CrossRefGoogle Scholar
  20. [20]
    Borg, B. M.; Dick, K. A.; Ganjipour, B.; Pistol, M. E.; Wernersson, L. E.; Thelander, C. InAs/GaSb heterostructure nanowires for tunnel field-effect transistors. Nano Lett. 2010, 10, 4080–4085.CrossRefGoogle Scholar
  21. [21]
    Schmid, H.; Bessire, C.; Björk, M. T.; Schenk, A.; Riel, H. Silicon nanowire Esaki diodes. Nano Lett. 2012, 12, 699–703.CrossRefGoogle Scholar
  22. [22]
    Ganjipour, B.; Dey, A. W.; Borg, B. M.; Ek, M.; Pistol, M. E.; Dick, K. A.; Wernersson, L. E.; Thelander, C. High current density Esaki tunnel diodes based on GaSb-InAsSb heterostructure nanowires. Nano Lett. 2011, 11, 4222–4226.CrossRefGoogle Scholar
  23. [23]
    Fung, W. Y.; Chen, L.; Lu, W. Esaki tunnel diodes based on vertical Si-Ge nanowire heterojunctions. Appl. Phys. Lett. 2011, 99, 092108.CrossRefGoogle Scholar
  24. [24]
    Nadar, S.; Rolland, C.; Lampin, J. F.; Wallart, X.; Caroff, P.; Leturcq, R. Tunnel junctions in a III–V nanowire by surface engineering. Nano Res. 2015, 8, 980–989.CrossRefGoogle Scholar
  25. [25]
    Otnes, G.; Heurlin, M.; Graczyk, M.; Wallentin, J.; Jacobsson, D.; Berg, A.; Maximov, I.; Borgström, M. T. Strategies to obtain pattern fidelity in nanowire growth from large-area surfaces patterned using nanoimprint lithography. Nano Res. 2016, 9, 2852–2861.CrossRefGoogle Scholar
  26. [26]
    Hultin, O.; Otnes, G.; Borgström, M. T.; Björk, M.; Samuelson, L.; Storm, K. Comparing Hall effect and field effect measurements on the same single nanowire. Nano Lett. 2016, 16, 205–211.CrossRefGoogle Scholar
  27. [27]
    Borgstöm, M. T.; Norberg, E.; Wickert, P.; Nilsson, H. A.; Trägårdh, J.; Dick, K. A.; Statkute, G.; Ramvall, P.; Deppert, K.; Samuelson, L. Precursor evaluation for in situ InP nanowire doping. Nanotechnology 2008, 19, 445602.CrossRefGoogle Scholar
  28. [28]
    Lindelöw, F.; Heurlin, M.; Otnes, G.; Dagytė, V.; Lindgren, D.; Hultin, O.; Storm, K.; Samuelson, L.; Borgström, M. T. Doping evaluation of InP nanowires for tandem junction solar cells. Nanotechnology 2016, 27, 065706.CrossRefGoogle Scholar
  29. [29]
    Otnes, G.; Heurlin, M.; Zeng, X.; Borgström, M. T. InxGa1–xP Nanowire growth dynamics strongly affected by doping using Diethylzinc. Nano Lett. 2017, 17, 702–707.CrossRefGoogle Scholar
  30. [30]
    Heurlin, M.; Anttu, N.; Camus, C.; Samuelson, L.; Borgström, M. T. In situ characterization of nanowire dimensions and growth dynamics by optical reflectance. Nano Lett. 2015, 15, 3597–3602.CrossRefGoogle Scholar
  31. [31]
    Borgström, M. T.; Wallentin, J.; Trägårdh, J.; Ramvall, P.; Ek, M.; Wallenberg, L. R.; Samuelson, L.; Deppert, K. In situ etching for total control over axial and radial nanowire growth. Nano Res. 2010, 3, 264–270.CrossRefGoogle Scholar
  32. [32]
    Jacobsson, D.; Persson, J. M.; Kriegner, D.; Etzelstorfer, T.; Wallentin, J.; Wagner, J. B.; Stangl, J.; Samuelson, L.; Deppert, K.; Borgström, M. T. Particle-assisted GaxIn1−xP nanowire growth for designed bandgap structures. Nanotechnology 2012, 23, 245601.CrossRefGoogle Scholar
  33. [33]
    Zener, C. A theory of the electrical breakdown of solid dielectrics. Proc. Roy. Soc. London 1934, 145, 523–529.CrossRefGoogle Scholar
  34. [34]
    Sze, S. M.; Ng, K. K. Physics of Semiconductor Devices; John Wiley & Sons Inc.: Hoboken, 2007.Google Scholar
  35. [35]
    Jandieri, K.; Baranovskii, S. D.; Rubel, O.; Stolz, W.; Gebhard, F.; Guter, W.; Hermle, M.; Bett, A. W. Resonant electron tunneling through defects in GaAs tunnel diodes. J. Appl. Phys. 2008, 104, 094506.CrossRefGoogle Scholar
  36. [36]
    Gutsche, C.; Regolin, I.; Blekker, K.; Lysov, A.; Prost, W.; Tegude, F. J. Controllable p-type doping of GaAs nanowires during vapor-liquid-solid growth. J. Appl. Phys. 2009, 105, 024305.CrossRefGoogle Scholar
  37. [37]
    Algra, R. E.; Verheijen, M. A.; Borgström, M. T.; Feiner, L. F.; Immink, G.; van Enckevort, W. J. P.; Bakkers, E. P. A. M. Twinning superlattices in indium phosphide nanowires. Nature 2008, 456, 369–372.CrossRefGoogle Scholar
  38. [38]
    van Weert, M. H. M.; Helman, A.; can den Einden, W.; Algra, R. E.; Verheijen, M. A.; Borgström, M. T.; Immink, G.; Kelly, J. J.; Kouwenhoven, L. P.; Bakkers, E. P. A. M. Zinc incorporation via the vapor-liquid-solid mechanism into InP nanowires. J. Am. Chem. Soc. 2009, 131, 4578–4579.CrossRefGoogle Scholar
  39. [39]
    Dick, K. A.; Bolinsson, J.; Borg, B. M.; Johansson, J. Controlling the abruptness of axial heterojunctions in III-V nanowires: Beyond the reservoir effect. Nano Lett. 2012, 12, 3200–3206.CrossRefGoogle Scholar
  40. [40]
    Okamoto, H.; Massalski, T. B. The Au-S (gold-sulfur) system. Bull. Alloy Phase Diagr. 1985, 6, 518–519.CrossRefGoogle Scholar
  41. [41]
    Ciulik, J.; Notis, M. R. The Au-Sn phase diagram. J. Alloy Compd. 1993, 191, 71–78.CrossRefGoogle Scholar
  42. [42]
    Guter, W.; Schöne, J.; Philipps, S. P.; Steiner, M.; Siefer, G.; Wekkli, A.; Welser, E.; Oliva, E.; Bett, A. W.; Dimroth, F. Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight. Appl. Phys. Lett. 2009, 94, 223504.CrossRefGoogle Scholar
  43. [43]
    Barrigón, E.; García, I.; Barrutia, L.; Rey-Stolle, I.; Algora, C. Highly conductive p++-AlGaAs/n++-GaInP tunnel junctions for ultra-high concentrator solar cells. Prog. Photovolt: Res. Appl. 2014, 22, 399–404.CrossRefGoogle Scholar
  44. [44]
    Leamy, H. J. Charge collection scanning electron microscopy. J. Appl. Phys. 1982, 53, R51–R80.CrossRefGoogle Scholar
  45. [45]
    Gutsche, C.; Niepelt, R.; Gnauck, M.; Lysov, A.; Prost, W.; Ronning, C.; Tegude, F. J. Direct determination of minority carrier diffusion lengths at axial GaAs nanowire p-n junctions. Nano Lett. 2012, 12, 1453–1458.CrossRefGoogle Scholar
  46. [46]
    Darbandi, A.; Watkins, S. P. Measurement of minority carrier diffusion lengths in GaAs nanowires by a nanoprobe technique. J. Appl. Phys. 2016, 120, 014301.CrossRefGoogle Scholar
  47. [47]
    Joyce, H. J.; Docherty, C. J.; Gao, Q.; Tan, H. H.; Jagadish, C.; Lloyd-Hughes, J.; Herz, L. M.; Johnston, M. B. Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy. Nanotechnology 2013, 24, 214006.CrossRefGoogle Scholar
  48. [48]
    Aspnes, D. E. Recombination at semiconductor surfaces and interfaces. Surf Sci. 1983, 132, 406–421.CrossRefGoogle Scholar
  49. [49]
    Bothra, S.; Tyagi, S.; Ghandhi, S. K.; Borrego, J. M. Surface recombination velocity and lifetime in InP. Solid State Electron. 1991, 34, 47–50.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Xulu Zeng
    • 1
  • Gaute Otnes
    • 1
  • Magnus Heurlin
    • 1
  • Renato T. Mourão
    • 2
  • Magnus T. Borgström
    • 1
  1. 1.Solid State Physics, NanoLund, Department of PhysicsLund UniversityLundSweden
  2. 2.Instituto de FísicaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations