Skip to main content
Log in

Polycation-functionalized gold nanodots with tunable near-infrared fluorescence for simultaneous gene delivery and cell imaging

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Near-infrared (NIR) fluorescent metal nanodots may have significant advantages in biological detection and bioimaging. Herein, we introduce tunable near-infrared fluorescent gold nanodots (AuNDs) protected by branched polyethylenimine (PEI) modified by surface segmental attachment of sulfhydryl groups (PEI-SH), abbreviated as PEI-SH-AuNDs, for simultaneous gene delivery and cell imaging. The modified PEI endows the resultant PEI-SH-AuNDs with the following excellent advantages. Sulfhydryl groups of PEI-SH anchor to the surface of AuNDs, and such polycations with amine groups give PEI-SH-AuNDs remarkable stability. The cationic polymer PEI-SH with positive charges enables PEI-SH-AuNDs to perform gene delivery, and the gene transfection efficiency can reach 22.8%. Moreover, the fluorescence of PEI-SH-AuNDs is tunable from visible red light (wavelength 609 nm) to NIR light (wavelength 811 nm) via an increase in the size of AuNDs. PEI-SH-AuNDs yielded gene transfection efficiency similar to that of commercial PEI, but showed much lower cytotoxicity and much greater red-shift fluorescence. With excellent photoluminescent properties, such multifunctional fluorescent PEI-SH-AuNDs hold promise in applications to bioimaging and as ideal fluorescent probes for tracking gene transfection behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, C. X.; Wang, Y.; Xu, L.; Shi, X. D.; Li, X. W.; Xu, X. W.; Sun, H. C.; Yang, B.; Lin, Q. A galvanic replacement route to prepare strongly fluorescent and highly stable gold nanodots for cellular imaging. Small 2013, 9, 413–420.

    Article  Google Scholar 

  2. Sun, Y. Q.; Wang, D. D.; Xu, L.; Zhao, T. X.; Wang, C. X.; Sun, H. C.; Lin, Q. Fluorescent small Au nanodots prepared from large Ag nanoparticles for targeting and imaging cancer cells. RSC Adv. 2015, 5, 52088–52094.

    Article  Google Scholar 

  3. Ueno, T.; Nagano, T. Fluorescent probes for sensing and imaging. Nat. Methods 2011, 8, 642–645.

    Article  Google Scholar 

  4. Yang, Y. M.; Zhao, Q.; Feng, W.; Li, F. Y. Luminescent chemodosimeters for bioimaging. Chem. Rev. 2013, 113, 192–270.

    Article  Google Scholar 

  5. Zhang, L. B.; Wang, E. K. Metal nanoclusters: New fluorescent probes for sensors and bioimaging. Nanotoday 2014, 9, 132–157.

    Article  Google Scholar 

  6. Wang, C. X.; Wang, Y.; Xu, L.; Zhang, D.; Liu, M. X.; Li, X. W.; Sun, H. C.; Lin, Q.; Yang, B. Facile aqueous-phase synthesis of biocompatible and fluorescent Ag2S nanoclusters for bioimaging: Tunable photoluminescence from red to near infrared. Small 2012, 8, 3137–3142.

    Article  Google Scholar 

  7. Hong, G. S.; Tabakman, S. M.; Welsher, K.; Chen, Z.; Robinson, J. T.; Wang, H. L.; Zhang, B.; Dai, H. J. Near-infrared-fluorescence-enhanced molecular imaging of live cells on gold substrates. Angew. Chem., Int. Ed. 2011, 50, 4644–4648.

    Article  Google Scholar 

  8. Du, Y. P.; Xu, B.; Fu, T.; Cai, M.; Li, F.; Zhang, Y.; Wang, Q. B. Near-infrared photoluminescent Ag2S quantum dots from a single source precursor. J. Am. Chem. Soc. 2010, 132, 1470–1471.

    Article  Google Scholar 

  9. Gu, Y. P.; Cui, R.; Zhang, Z. L.; Xie, Z. X.; Pang, D. W. Ultrasmall near-infrared Ag2Se quantum dots with tunable fluorescence for in vivo imaging. J. Am. Chem. Soc. 2012, 134, 79–82.

    Article  Google Scholar 

  10. Nakane, Y.; Tsukasaki, Y.; Sakata, T.; Yasudab, H.; Jin, T. Aqueous synthesis of glutathione-coated PbS quantum dots with tunable emission for non-invasive fluorescence imaging in the second near-infrared biological window (1000–1400 nm). Chem. Commun. 2013, 49, 7584–7586.

    Article  Google Scholar 

  11. Shuhendler, A. J.; Prasad, P.; Chan, H.-K. C.; Gordijo, C. R.; Soroushian, B.; Kolios, M.; Yu, K.; O’Brien, P. J.; Rauth, A. M.; Wu, X. Y. Hybrid quantum dot-fatty ester stealth nanoparticles: Toward clinically relevant in vivo optical imaging of deep tissue. ACS Nano 2011, 5, 1958–1966.

    Article  Google Scholar 

  12. Sun, H. Z.; Zhang, H.; Ju, J.; Zhang, J. H.; Qian, G.; Wang, C. L.; Yang, B.; Wang, Z. Y. One-step synthesis of high-quality gradient CdHgTe nanocrystals: A prerequisite to prepare CdHgTe-polymer bulk composites with intense near-infrared photoluminescence. Chem. Mater. 2008, 20, 6764–6769.

    Article  Google Scholar 

  13. Miao, S. D.; Hickey, S. G.; Rellinghaus, B.; Waurisch, C.; Eychmüller, A. Synthesis and characterization of cadmium phosphide quantum dots emitting in the visible red to near-infrared. J. Am. Chem. Soc. 2010, 132, 5613–5615.

    Article  Google Scholar 

  14. Zheng, J.; Nicovich, P. R.; Dickson, R. M. Highly fluorescent noble metal quantum dots. Annu. Rev. Phys. Chem. 2007, 58, 409–431.

    Article  Google Scholar 

  15. Díez, I.; Ras, R. H. A. Fluorescent silver nanoclusters. Nanoscale 2011, 3, 1963–1970.

    Article  Google Scholar 

  16. Li, G.; Jin, R. C. Atomically precise gold nanoclusters as new model catalysts. Acc. Chem. Res. 2013, 46, 1749–1758.

    Article  Google Scholar 

  17. Choi, S.; Dickson, R. M.; Yu, J. H. Developing luminescent silver nanodots for biological applications. Chem. Soc. Rev. 2012, 41, 1867–1891.

    Article  Google Scholar 

  18. Chen, Y.; Sun, Y. Q.; Song, R. J.; Song, S. L.; Zhao, Y.; Yang, X. D.; Yu, C.; Lin, Q. Fluorometric “turn-on” glucose sensing through the in situ generation of silver nanoclusters. RSC Adv. 2017, 7, 1396–1400.

    Article  Google Scholar 

  19. Hyotanishi, M.; Isomura, Y.; Yamamoto, H.; Kawasaki, H.; Obora, Y. Surfactant-free synthesis of palladium nanoclusters for their use in catalytic cross-coupling reactions. Chem. Commun. 2011, 47, 5750–5752.

    Article  Google Scholar 

  20. Tanaka, S.-I.; Miyazaki, J.; Tiwari, D. K.; Jin, T.; Inouye, Y. Fluorescent platinum nanoclusters: Synthesis, purification, characterization, and application to bioimaging. Angew. Chem., Int. Ed. 2011, 50, 431–435.

    Article  Google Scholar 

  21. Wei, W. T.; Lu, Y. Z.; Chen, W.; Chen, S. W. One-pot synthesis, photoluminescence, and electrocatalytic properties of subnanometer-sized copper clusters. J. Am. Chem. Soc. 2011, 133, 2060–2063.

    Article  Google Scholar 

  22. Yao, Q. F.; Yuan, X.; Yu, Y.; Yu, Y.; Xie, J. P.; Lee, J. Y. Introducing amphiphilicity to noble metal nanoclusters via phase-transfer driven ion-pairing reaction. J. Am. Chem. Soc. 2015, 137, 2128–2136.

    Article  Google Scholar 

  23. Zheng, J.; Zhou, C.; Yu, M. X.; Liu, J. B. Different sized luminescent gold nanoparticles. Nanoscale 2012, 4, 4073–4083.

    Article  Google Scholar 

  24. Song, X.-R.; Goswami, N.; Yang, H.-H.; Xie, J. P. Functionalization of metal nanoclusters for biomedical applications. Analyst 2016, 141, 3126–3140.

    Article  Google Scholar 

  25. Chen, T.-H.; Tseng, W.-L. (Lysozyme type VI)-stabilized Au8 clusters: Synthesis mechanism and application for sensing of glutathione in a single drop of blood. Small 2012, 8, 1912–1919.

    Article  Google Scholar 

  26. Wang, H.-H.; Lin, C.-A. J.; Lee, C.-H.; Lin, Y.-C.; Tseng, Y.-M.; Hsieh, C.-L.; Chen, C.-H.; Tsai, C.-H.; Hsieh, C.-T.; Shen, J.-L. et al. Fluorescent gold nanoclusters as a biocompatible marker for in vitro and in vivo tracking of endothelial cells. ACS Nano 2011, 5, 4337–4344.

    Article  Google Scholar 

  27. Shang, L.; Azadfar, N.; Stockmar, F.; Send, W.; Trouillet, V.; Bruns, M.; Gerthsen, D.; Nienhaus, G. U. One-pot synthesis of near-infrared fluorescent gold clusters for cellular fluorescence lifetime imaging. Small 2011, 7, 2614–2620.

    Article  Google Scholar 

  28. Shang, L.; Stockmar, F.; Azadfar, N.; Nienhaus, G. U. Intracellular thermometry by using fluorescent gold nanoclusters. Angew. Chem., Int. Ed. 2013, 52, 11154–11157.

    Article  Google Scholar 

  29. Huang, H. L.; Yu, H.; Tang, G. P.; Wang, Q. Q.; Li, J. Low molecular weight polyethylenimine cross-linked by 2-hydroxypropyl-γ-cyclodextrin coupled to peptide targeting HER2 as a gene delivery vector. Biomaterials 2010, 31, 1830–1838.

    Article  Google Scholar 

  30. McCormick, F. Cancer gene therapy: Fringe or cutting edge? Nat. Rev. Cancer 2001, 1, 130–141.

    Article  Google Scholar 

  31. Kim, S. I.; Shin, D.; Lee, H.; Ahn, B. Y.; Yoon, Y.; Kim, M. Targeted delivery of siRNA against hepatitis C virus by apolipoprotein A-I-bound cationic liposomes. J. Hepatol. 2009, 50, 479–488.

    Article  Google Scholar 

  32. Pawliuk, R.; Westerman, K. A.; Fabry, M. E.; Payen, E.; Tighe, R.; Bouhassira, E. E.; Acharya, S. A.; Ellis, J.; London, I. M.; Eaves, C. J. et al. Correction of sickle cell disease in transgenic mouse models by gene therapy. Science 2001, 294, 2368–2371.

    Article  Google Scholar 

  33. Yin, L. C.; Song, Z. Y.; Kim, K. H.; Zheng, N.; Gabrielson, N. P.; Cheng, J. J. Non-viral gene delivery via membrane-penetrating, mannose-targeting supramolecular self-assembled nanocomplexes. Adv. Mater. 2013, 25, 3063–3070.

    Article  Google Scholar 

  34. Lv, H. T.; Zhang, S. B.; Wang, B.; Cui, S. H.; Yan, J. Toxicity of cationic lipids and cationic polymers in gene delivery. J. Controlled Release 2006, 114, 100–109.

    Article  Google Scholar 

  35. Zhu, C. L.; Lu, C. H.; Song, X. Y.; Yang, H. H.; Wang, X. R. Bioresponsive controlled release using mesoporous silica nanoparticles capped with aptamer-based molecular gate. J. Am. Chem. Soc. 2011, 133, 1278–1281.

    Article  Google Scholar 

  36. Du, X.; Shi, B. Y; Liang, J.; Bi, J. X.; Dai, S.; Qiao, S. Z. Developing functionalized dendrimer-like silica nanoparticles with hierarchical pores as advanced delivery nanocarriers. Adv. Mater. 2013, 25, 5981–5985.

    Article  Google Scholar 

  37. Yu, Y.; Luo, Z. T.; Chevrier, D. M.; Leong, D. T.; Zhang, P.; Jiang, D.-E.; Xie, J. P. Identification of a highly luminescent Au22(SG)18 nanocluster. J. Am. Chem. Soc. 2014, 136, 1246–1249.

    Article  Google Scholar 

  38. Yuan, Z. Q.; Cai, N.; Du, Y.; He, Y.; Yeung, E. S. Sensitive and selective detection of copper ions with highly stable polyethyleneimine-protected silver nanoclusters. Anal. Chem. 2014, 86, 419–426.

    Article  Google Scholar 

  39. Luo, Z. T.; Yuan, X.; Yu, Y.; Zhang, Q. B.; Leong, D. T.; Lee, J. Y.; Xie, J. P. From aggregation-induced emission of Au(I)-thiolate complexes to ultrabright Au(0)@Au(I)-thiolate core–shell nanoclusters. J. Am. Chem. Soc. 2012, 134, 16662–16670.

    Article  Google Scholar 

  40. Chen, W. B.; Tu, X. J.; Guo, X. Q. Fluorescent gold nanoparticles-based fluorescence sensor for Cu2+ ions. Chem. Commun. 2009, 1736–1738.

    Google Scholar 

  41. Zhou, C.; Sun, C.; Yu, M. X.; Qin, Y. P.; Wang, J. G.; Kim, M.; Zheng, J. Luminescent gold nanoparticles with mixed valence states generated from dissociation of polymeric Au(I) thiolates. J. Phys. Chem. C 2010, 114, 7727–7732.

    Article  Google Scholar 

  42. Huang, C.-C.; Yang, Z. S.; Lee, K.-H.; Chang, H.-T. Synthesis of highly fluorescent gold nanoparticles for sensing mercury(II). Angew. Chem., Int. Ed. 2007, 46, 6824–6828.

    Article  Google Scholar 

  43. Chen, T. K.; Luo, Z. T.; Yao, Q. F.; Yeo, A. X. H.; Xie J. P. Synthesis of thiolate-protected Au nanoparticles revisited: U-shape trend between the size of nanoparticles and thiol-to-Au ratio. Chem. Commun. 2016, 52, 9522–9525.

    Article  Google Scholar 

  44. Shang, L.; Dörlich, R. M.; Brandholt, S.; Schneider, R.; Trouillet, V.; Bruns, M.; Gerthsen, D.; Nienhaus, G. U. Facile preparation of water-soluble fluorescent gold nanoclusters for cellular imaging applications. Nanoscale 2011, 3, 2009–2014.

    Article  Google Scholar 

  45. Cha, S.-H.; Kim, J.-U.; Kim, K.-H.; Lee, J.-C. Preparation and photoluminescent properties of gold(I)-alkanethiolate complexes having highly ordered supramolecular structures. Chem. Mater. 2007, 19, 6297–6303.

    Article  Google Scholar 

  46. Wu, Z. K.; Jin, R. C. On the ligand’s role in the fluorescence of gold nanoclusters. Nano Lett. 2010, 10, 2568–2573.

    Article  Google Scholar 

  47. Goswami, N.; Yao, Q. F.; Luo, Z. T.; Li, J. G.; Chen, T. K.; Xie, J. P. Luminescent metal nanoclusters with aggregationinduced emission. J. Phys. Chem. Lett. 2016, 7, 962–975.

    Article  Google Scholar 

  48. Roux, S.; Garcia, B.; Bridot, J.-L.; Salomé, M.; Marquette, C.; Lemelle, L.; Gillet, P.; Blum, L.; Perriat, P.; Tillement, O. Synthesis, characterization of dihydrolipoic acid capped gold nanoparticles, and functionalization by the electroluminescent luminol. Langmuir 2005, 21, 2526–2536.

    Article  Google Scholar 

  49. Pyo, K.; Thanthirige, V. D.; Kwak, K.; Pandurangan, P.; Ramakrishna, G.; Lee, D. Ultrabright luminescence from gold nanoclusters: Rigidifying the Au(I)-thiolate shell. J. Am. Chem. Soc. 2015, 137, 8244–8250.

    Article  Google Scholar 

  50. Xie, Y. C.; Yin, T.; Wiegraebe, W.; He, X. C.; Miller, D.; Stark, D.; Perko, K.; Alexander, R.; Schwartz, J.; Grindley, J. C. et al. Detection of functional haematopoietic stem cell niche using real-time imaging. Nature 2009, 457, 97–102.

    Article  Google Scholar 

  51. Breus, V. V.; Heyes, C. D.; Tron, K.; Nienhaus, G. U. Zwitterionic biocompatible quantum dots for wide pH stability and weak nonspecific binding to cells. ACS Nano 2009, 3, 2573–2580.

    Article  Google Scholar 

  52. Briñas, R. P.; Hu, M. H.; Qian, L. P.; Lymar, E. S.; Hainfeld, J. F. Gold nanoparticle size controlled by polymeric Au(I) thiolate precursor size. J. Am. Chem. Soc. 2008, 130, 975–982.

    Article  Google Scholar 

  53. Wang, C.; Wang, C. X.; Xu, L.; Cheng, H.; Lin, Q.; Zhang, C. Protein-directed synthesis of pH-responsive red fluorescent copper nanoclusters and their applications in cellular imaging and catalysis. Nanoscale 2014, 6, 1775–1781.

    Article  Google Scholar 

  54. Whetten, R. L.; Price, R. C. Chemistry: Nano-golden order. Science 2007, 318, 407–408.

    Article  Google Scholar 

  55. Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Bushnell, D. A.; Kornberg, R. D. Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolution. Science 2007, 318, 430–433.

    Article  Google Scholar 

  56. Zhu, M. Z.; Aikens, C. M.; Hollander, F. J.; Schatz, G. C.; Jin, R. C. Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. J. Am. Chem. Soc. 2008, 130, 5883–5885.

    Article  Google Scholar 

  57. Tao, Y.; Li, Z. H.; Ju, E. G.; Ren, J. S.; Qu, X. G. Polycationsfunctionalized water-soluble gold nanoclusters: A potential platform for simultaneous enhanced gene delivery and cell imaging. Nanoscale 2013, 5, 6154–6160.

    Article  Google Scholar 

  58. Tang, Q.; Cao, B.; Wu; H. Y.; Cheng, G. Selective gene delivery to cancer cells using an integrated cationic amphiphilic peptide. Langmuir 2012, 28, 16126–16132.

    Article  Google Scholar 

  59. Sokolova, V.; Epple, M. Inorganic nanoparticles as carriers of nucleic acids into cells. Angew. Chem., Int. Ed. 2008, 47, 1382–1395.

    Article  Google Scholar 

  60. Akinc, A.; Thomas, M.; Klibanov, A. M.; Langer, R. Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J. Gene Med. 2005, 7, 657–663.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51503085, 51373061 and 21304090), Science Foundation of China University of Petroleum, Beijing (No. 2462017YJRC027), open project of state key laboratory of supramolecular structure and materials (No. sklssm201724) and Graduate Innovation Fund of Jilin University (Project 2016112). We would like to thank Prof. Helmuth Moehwald from the Max Planck Institute of Colloids and Interfaces, Germany for useful discussions and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chuanxi Wang or Quan Lin.

Electronic supplementary material

12274_2017_1860_MOESM1_ESM.pdf

Polycation-functionalized gold nanodots with tunable near-infrared fluorescence for simultaneous gene delivery and cell imaging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Wang, D., Zhao, Y. et al. Polycation-functionalized gold nanodots with tunable near-infrared fluorescence for simultaneous gene delivery and cell imaging. Nano Res. 11, 2392–2404 (2018). https://doi.org/10.1007/s12274-017-1860-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1860-4

Keywords

Navigation