Advertisement

Nano Research

, Volume 11, Issue 4, pp 2295–2309 | Cite as

Sodium-doped carbon nitride nanotubes for efficient visible light-driven hydrogen production

  • Longshuai Zhang
  • Ning Ding
  • Muneaki Hashimoto
  • Koudai Iwasaki
  • Noriyasu Chikamori
  • Kazuya Nakata
  • Yuzhuan Xu
  • Jiangjian Shi
  • Huijue Wu
  • Yanhong Luo
  • Dongmei LiEmail author
  • Akira FujishimaEmail author
  • Qingbo MengEmail author
Research Article

Abstract

Sodium-doped carbon nitride nanotubes (Na x -CNNTs) were prepared by a green and simple two-step method and applied in photocatalytic water splitting for the first time. Transmission electron microscopy (TEM) element mapping and X-ray photoelectron spectroscopy (XPS) measurements confirm that sodium was successfully introduced in the carbon nitride nanotubes (CNNTs), and the intrinsic structure of graphitic carbon nitride (g-C3N4) was also maintained in the products. Moreover, the porous structure of the CNNTs leads to relatively large specific surface areas. Photocatalytic tests indicate that the porous tubular structure and Na+ doping can synergistically enhance the hydrogen evolution rate under visible light (λ > 420 nm) irradiation in the presence of sacrificial agents, leading to a hydrogen evolution rate as high as 143 μmol·h−1 (20 mg catalyst). Moreover, other alkali metal-doped CNNTs, such as Li x -CNNTs and K x -CNNTs, were tested; both materials were found to enhance the hydrogen evolution rate, but to a lower extent compared with the Na x -CNNTs. This highlights the general applicability of the present method to prepare alkali metal-doped CNNTs; a preliminary mechanism for the photocatalytic hydrogen evolution reaction in the Na x -CNNTs is also proposed.

Keywords

graphitic carbon nitrides nanotubes alkali metal doping photocatalytic hydrogen production hydrothermal/thermopolymerization processes two-step synthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors would like to thank the financial support from Sakura Science Program (Japan Science and Technology Agency), National Natural Science Foundation of China (Nos. 51627803, 51402348, 11474333, 91433205, 51421002, and 51372270) and the Knowledge Innovation Program of the Chinese Academy of Sciences.

Supplementary material

12274_2017_1853_MOESM1_ESM.pdf (572 kb)
Sodium-doped carbon nitride nanotubes for efficient visible light-driven hydrogen production

References

  1. [1]
    Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.CrossRefGoogle Scholar
  2. [2]
    Wang, X.; Xu, Q.; Li, M. R.; Shen, S.; Wang, X. L.; Wang, Y. C.; Feng, Z. C.; Shi, J. Y.; Han, H. X.; Li, C. Photocatalytic overall water splitting promoted by an α-β phase junction on Ga2O3. Angew. Chem., Int. Ed. 2012, 51, 13089–13092.CrossRefGoogle Scholar
  3. [3]
    Wang, Q.; Hisatomi, T.; Jia, Q. X.; Tokudome, H.; Zhong, M.; Wang, C. Z.; Pan, Z. H.; Takata, T.; Nakabayashi, M.; Shibata, N. et al. Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. Nat. Mater. 2016, 15, 611–615.CrossRefGoogle Scholar
  4. [4]
    Chen, X. B.; Liu, L.; Peter, Y. Y.; Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 2011, 331, 746–750.CrossRefGoogle Scholar
  5. [5]
    Iwashina, K.; Iwase, A.; Ng, Y. H.; Amal, R.; Kudo, A. Z-schematic water splitting into H2 and O2 using metal sulfide as a hydrogen-evolving photocatalyst and reduced graphene oxide as a solid-state electron mediator. J. Am. Chem. Soc. 2015, 137, 604–607.CrossRefGoogle Scholar
  6. [6]
    Bi, Y. P.; Ouyang, S. X.; Umezawa, N.; Cao, J. Y.; Ye, J. H. Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties. J. Am. Chem. Soc. 2011, 133, 6490–6492.CrossRefGoogle Scholar
  7. [7]
    Tada, H.; Fujishima, M.; Kobayashi, H. Photodeposition of metal sulfide quantum dots on titanium(IV) dioxide and the applications to solar energy conversion. Chem. Soc. Rev. 2011, 40, 4232–4243.CrossRefGoogle Scholar
  8. [8]
    Xiang, Q. J.; Yu, J. G.; Jaroniec, M. Graphene-based semiconductor photocatalysts. Chem. Soc. Rev. 2012, 41, 782–796.CrossRefGoogle Scholar
  9. [9]
    Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, M. J.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80.CrossRefGoogle Scholar
  10. [10]
    Liu, G.; Niu, P.; Sun, C. H.; Smith, S. C.; Chen, Z. G.; Lu, G. Q.; Cheng, H. M. Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. J. Am. Chem. Soc. 2010, 132, 11642–11648.CrossRefGoogle Scholar
  11. [11]
    Zhu, J. J.; Xiao, P.; Li, H. L.; Carabineiro, S. A. C. Graphitic carbon nitride: Synthesis, properties, and appli-cations in catalysis. ACS Appl. Mater. Interfaces 2014, 6, 16449–16465.CrossRefGoogle Scholar
  12. [12]
    Zheng, Y.; Lin, L. H.; Wang, B.; Wang, X. C. Graphitic carbon nitride polymers toward sustainable photoredox catalysis. Angew. Chem., Int. Ed. 2015, 54, 12868–12884.CrossRefGoogle Scholar
  13. [13]
    Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? Chem. Rev. 2016, 116, 7159–7329.CrossRefGoogle Scholar
  14. [14]
    Pan, C. S.; Xu, J.; Wang, Y. J.; Li, D.; Zhu, Y. F. Dramatic activity of C3N4/BiPO4 photocatalyst with core/shell structure formed by self-assembly. Adv. Funct. Mater. 2012, 22, 1518–1524.CrossRefGoogle Scholar
  15. [15]
    Cao, S. W.; Low, J. X.; Yu, J. G.; Jaroniec, M. Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 2015, 27, 2150–2176.CrossRefGoogle Scholar
  16. [16]
    Lin, L. H.; Ou, H. H.; Zhang, Y. F.; Wang, X. C. Tri-s-triazine-based crystalline graphitic carbon nitrides for highly efficient hydrogen evolution photocatalysis. ACS Catal. 2016, 6, 3921–3931.CrossRefGoogle Scholar
  17. [17]
    Raziq, F.; Qu, Y.; Humayun, M.; Zada, A.; Yu, H. T.; Jing, L. Q. Synthesis of SnO2/B-P codoped g-C3N4 nanocom-posites as efficient cocatalyst-free visible-light photoca-talysts for CO2 conversion and pollutant degradation. Appl. Catal. B: Environ. 2017, 201, 486–494.CrossRefGoogle Scholar
  18. [18]
    Zada, A.; Humayun, M.; Raziq, F.; Zhang, X. L.; Qu, Y.; Bai, L. L.; Qin, C. L.; Jing, L. Q.; Fu, H. G. Exceptional visible-light-driven cocatalyst-free photocatalytic activity of g-C3N4 by well designed nanocomposites with plasmonic Au and SnO2. Adv. Energy Mater. 2016, 6, 1601190.CrossRefGoogle Scholar
  19. [19]
    Jun, Y. S.; Park, J.; Lee, S. U.; Thomas, A.; Hong, W. H.; Stucky, G. D. Three-dimensional macroscopic assemblies of low-dimensional carbon nitrides for enhanced hydrogen evolution. Angew. Chem., Int. Ed. 2013, 52, 11083–11087.CrossRefGoogle Scholar
  20. [20]
    Zhang, J. S.; Zhang, M. W.; Yang, C.; Wang, X. C. Nanospherical carbon nitride frameworks with sharp edges accelerating charge collection and separation at a soft photocatalytic interface. Adv. Mater. 2014, 26, 4121–4126.CrossRefGoogle Scholar
  21. [21]
    Yan, H. J. Soft-templating synthesis of mesoporous graphitic carbon nitride with enhanced photocatalytic H2 evolution under visible light. Chem. Commun. 2012, 48, 3430–3432.CrossRefGoogle Scholar
  22. [22]
    Chen, X. F.; Jun, Y. S.; Takanabe, K.; Maeda, K.; Domen, K.; Fu, X. Z.; Antonietti, M.; Wang, X. C. Ordered meso-porous SBA-15 type graphitic carbon nitride: A semicon-ductor host structure for photocatalytic hydrogen evolution with visible light. Chem. Mater. 2009, 21, 4093–4095.CrossRefGoogle Scholar
  23. [23]
    Liu, J.; Huang, J. H.; Zhou, H.; Antonietti, M. Uniform graphitic carbon nitride nanorod for efficient photocatalytic hydrogen evolution and sustained photoenzymatic catalysis. ACS Appl. Mater. Interfaces 2014, 6, 8434–8440.CrossRefGoogle Scholar
  24. [24]
    Guo, S. E.; Deng, Z. P.; Li, M. X.; Jiang, B. J.; Tian, C. G.; Pan, Q. J.; Fu, H. G. Phosphorus-doped carbon nitride tubes with a layered micro-nanostructure for enhanced visi-ble-light photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2016, 55, 1830–1834.CrossRefGoogle Scholar
  25. [25]
    Tahir, M.; Mahmood, N.; Zhang, X. X.; Mahmood, T.; Butt, F. K.; Aslam, I.; Tanveer, M.; Idrees, F.; Khalid, S.; Shakir, I. et al. Bifunctional catalysts of Co3O4@GCN tubular nanostructured (TNS) hybrids for oxygen and hydrogen evolution reactions. Nano Res. 2015, 8, 3725–3736.CrossRefGoogle Scholar
  26. [26]
    Shalom, M.; Inal, S.; Fettkenhauer, C.; Neher, D.; Ant-onietti, M. Improving carbon nitride photocatalysis by supramolecular preorganization of monomers. J. Am. Chem. Soc. 2013, 135, 7118–7121.CrossRefGoogle Scholar
  27. [27]
    Niu, P.; Zhang, L. L.; Liu, G.; Cheng, H. M. Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 2012, 22, 4763–4770.CrossRefGoogle Scholar
  28. [28]
    Erwin, S. C.; Zu, L. J.; Haftel, M. I.; Efros, A. L.; Kennedy, T. A.; Norris, D. J. Doping semiconductor nanocrystals. Nature 2005, 436, 91–94.CrossRefGoogle Scholar
  29. [29]
    Lu, S.; Li, C.; Li, H. H.; Zhao, Y. F.; Gong, Y. Y.; Niu, L. Y.; Liu, X. J.; Wang, T. The effects of nonmetal dopants on the electronic, optical and chemical performances of monolayer g-C3N4 by first-principles study. Appl. Surf. Sci. 2017, 392, 966–974.CrossRefGoogle Scholar
  30. [30]
    Zhu, Y. N.; Cao, C. Y.; Jiang, W. J.; Yang, S. L.; Hu, J. S.; Song, W. G.; Wan, L. J. Nitrogen, phosphorus and sulfur co-doped ultrathin carbon nanosheets as a metal-free catalyst for selective oxidation of aromatic alkanes and the oxygen reduction reaction. J. Mater. Chem. A 2016, 4, 18470–18477.CrossRefGoogle Scholar
  31. [31]
    Ye, L. J.; Wang, D.; Chen, S. J. Fabrication and enhanced photoelectrochemical performance of MoS2/S-doped g-C3N4 heterojunction film. ACS Appl. Mater. Interfaces 2016, 8, 5280–5289.CrossRefGoogle Scholar
  32. [32]
    Lin, Z. Z.; Wang, X. C. Nanostructure engineering and doping of conjugated carbon nitride semiconductors for hydrogen photosynthesis. Angew. Chem., Int. Ed. 2013, 52, 1735–1738.CrossRefGoogle Scholar
  33. [33]
    Hong, J. D.; Xia, X. Y.; Wang, Y. S.; Xu, R. Mesoporous carbon nitride with in situ sulfur doping for enhanced photocatalytic hydrogen evolution from water under visible light. J. Mater. Chem. 2012, 22, 15006–15012.CrossRefGoogle Scholar
  34. [34]
    Yue, B.; Li, Q. Y.; Iwai, H.; Kako, T.; Ye, J. H. Hydrogen production using zinc-doped carbon nitride catalyst irradiated with visible light. Sci. Technol. Adv. Mater. 2011, 12, 034401.CrossRefGoogle Scholar
  35. [35]
    Beheshtian, J.; Baei, T. M.; Bagheri, Z.; Peyghan, A. A. Carbon nitride nanotube as a sensor for alkali and alkaline earth cations. Appl. Surf. Sci. 2013, 264, 699–706.CrossRefGoogle Scholar
  36. [36]
    Hu, S. Z.; Chen, X.; Li, Q.; Li, F. Y.; Fan, Z. P.; Wang, H.; Wang, Y. J.; Zheng, B. H.; Wu, G. Fe3+ doping promoted N2 photofixation ability of honeycombed graphitic carbon nitride: The experimental and density functional theory sim-ulation analysis. Appl. Catal. B: Environ. 2017, 201, 58–69.CrossRefGoogle Scholar
  37. [37]
    Xiong, T.; Cen, W. L.; Zhang, Y. X.; Dong, F. Bridging the g-C3N4 interlayers for enhanced photocatalysis. ACS Catal. 2016, 6, 2462–2472.CrossRefGoogle Scholar
  38. [38]
    Gao, H. L.; Yan, S. C.; Wang, J. J.; Huang, Y. A.; Wang, P.; Li, Z. S.; Zou Z. G. Towards efficient solar hydrogen production by intercalated carbon nitride photocatalyst. Phys. Chem. Chem. Phys. 2013, 15, 18077–18084.CrossRefGoogle Scholar
  39. [39]
    Zhang, M.; Bai, X. J.; Liu, D.; Wang, J.; Zhu, Y. F. Enhanced catalytic activity of potassium-doped graphitic carbon nitride induced by lower valence position. Appl. Catal. B: Environ. 2015, 164, 77–81.CrossRefGoogle Scholar
  40. [40]
    Wu, M.; Yan, J. M.; Tang, X. N.; Zhao, M.; Jiang, Q. Synthesis of potassium-modified graphitic carbon nitride with high photocatalytic activity for hydrogen evolution. ChemSusChem 2014, 7, 2654–2658.CrossRefGoogle Scholar
  41. [41]
    Jiang, L. B.; Yuan, X. Z.; Pan, Y.; Liang, J.; Zeng, G. M.; Wu, Z. B.; Wang, H. Doping of graphitic carbon nitride for photocatalysis: A review. Appl. Catal. B: Environ. 2017, 217, 388–406.CrossRefGoogle Scholar
  42. [42]
    Long, B. H.; Lin, J. L.; Wang, X. C. Thermally-induced desulfurization and conversion of guanidine thiocyanate into graphitic carbon nitride catalysts for hydrogen photosynthesis. J. Mater. Chem. A 2014, 2, 2942–2951.CrossRefGoogle Scholar
  43. [43]
    Fan, X. Q.; Xing, Z.; Shu, Z.; Zhang, L. X.; Wang, L. Z.; Shi, J. L. Improved photocatalytic activity of g-C3N4 derived from cyanamide-urea solution. RSC Adv. 2015, 5, 8323–8328.CrossRefGoogle Scholar
  44. [44]
    Dong, F.; Ou, M. Y.; Jiang, Y. K.; Guo, S.; Wu, Z. B. Efficient and durable visible light photocatalytic perfor-mance of porous carbon nitride nanosheets for air puri-fication. Ind. Eng. Chem. Res. 2014, 53, 2318–2330.CrossRefGoogle Scholar
  45. [45]
    Le, S. K.; Jiang, T. S.; Li, Y. W.; Zhao, Q.; Li, Y. Y.; Fang, W. B.; Gong, M. Highly efficient visible-light-driven mesoporous graphitic carbon nitride/ZnO nanocomposite photocatalysts. Appl. Catal. B: Environ. 2017, 200, 601–610.CrossRefGoogle Scholar
  46. [46]
    Han, Q.; Wang, B.; Gao, J.; Cheng, Z. H.; Zhao, Y.; Zhang, Z. P.; Qu, L. T. Atomically thin mesoporous nanomesh of graphitic C3N4 for high-efficiency photocatalytic hydrogen evolution. ACS Nano 2016, 10, 2745–2751.CrossRefGoogle Scholar
  47. [47]
    Sharma, J.; Gora, T.; Rimstidt, J. D.; Staley, R. X-ray photoelectron spectra of the alkali azides. Chem. Phys. Lett. 1972, 15, 232–235.CrossRefGoogle Scholar
  48. [48]
    Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquérol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619.CrossRefGoogle Scholar
  49. [49]
    Zheng, D. D.; Cao, X. N.; Wang, X. C. Precise formation of a hollow carbon nitride structure with a Janus surface to promote water splitting by photoredox catalysis. Angew. Chem., Int. Ed. 2016, 55, 11512–11516.CrossRefGoogle Scholar
  50. [50]
    Zhang, J. K.; Yu, Z. B.; Gao, Z.; Ge, H. B.; Zhao, S. C.; Chen, C. Q.; Chen, S.; Tong, X. L.; Wang, M. H.; Zheng, Z. F. et al. Porous TiO2 nanotubes with spatially separated platinum and CoOx cocatalysts produced by atomic layer deposition for photocatalytic hydrogen production. Angew. Chem., Int. Ed. 2017, 56, 816–820.CrossRefGoogle Scholar
  51. [51]
    Tong, Z. W.; Yang, D.; Li, Z.; Nan, Y. H.; Ding, F.; Shen, Y. C.; Jiang, Z. Y. Thylakoid-inspired multishell g-C3N4 nanocapsules with enhanced visible-light harvesting and electron transfer properties for high-efficiency photoca-talysis. ACS Nano 2017, 11, 1103–1112.CrossRefGoogle Scholar
  52. [52]
    Chen, Y.; Wang, B.; Lin, S.; Zhang, Y. F.; Wang, X. C. Activation of n →π* transitions in two-dimensional conjugated polymers for visible light photocatalysis. J. Phys. Chem. C 2014, 118, 29981–29989.CrossRefGoogle Scholar
  53. [53]
    Jorge, A. B.; Martin, D. J.; Dhano, M. T. S.; Rahman, A. S.; Makwan, N.; Tang, J. W.; Sella, A.; Corà, F.; Firth, S.; Marr, A. J. et al. H2 and O2 evolution from water half-splitting reactions by graphitic carbon nitride materials. J. Phys. Chem. C 2013, 117, 7178–7185.CrossRefGoogle Scholar
  54. [54]
    Scholes, G. D.; Rumbles, G. Excitons in nanoscale systems. Nat. Mater. 2006, 5, 683–696.CrossRefGoogle Scholar
  55. [55]
    Liang, Q. H.; Li, Z.; Huang, Z. H.; Kang, F. Y.; Yang, Q. H. Holey graphitic carbon nitride nanosheets with carbon vacancies for highly improved photocatalytic hydrogen production. Adv. Funct. Mater. 2015, 25, 6885–6892.CrossRefGoogle Scholar
  56. [56]
    Zhang, G. G.; Zhang, M. W.; Ye, X. X.; Qiu, X. Q.; Lin, S.; Wang, X. C. Iodine modified carbon nitride semiconductors as visible light photocatalysts for hydrogen evolution. Adv. Mater. 2014, 26, 805–809.CrossRefGoogle Scholar
  57. [57]
    Sano, T.; Tsutsui, S.; Koike, K.; Hirakawa, T.; Teramoto, Y.; Negishi, N.; Takeuchi, K. Activation of graphitic carbon nitride (g-C3N4) by alkaline hydrothermal treatment for photocatalytic NO oxidation in gas phase. J. Mater. Chem. A 2013, 1, 6489–6496.CrossRefGoogle Scholar
  58. [58]
    Guo, F.; Chen, J. L.; Zhang, M. W.; Gao, B. F.; Lin, B. Z.; Chen, Y. L. Deprotonation of g-C3N4 with Na ions for efficient nonsacrificial water splitting under visible light. J. Mater. Chem. A 2016, 4, 10806–10809.CrossRefGoogle Scholar
  59. [59]
    Zhang, Q.; Liu, S. Z.; Zhang, Y. C.; Zhu, A. P.; Li, J.; Du, X. H. Enhancement of the photocatalytic activity of g-C3N4 via treatment in dilute NaOH aqueous solution. Mater. Lett. 2016, 171, 79–82.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Longshuai Zhang
    • 1
    • 3
  • Ning Ding
    • 1
    • 3
  • Muneaki Hashimoto
    • 2
  • Koudai Iwasaki
    • 2
  • Noriyasu Chikamori
    • 2
  • Kazuya Nakata
    • 2
  • Yuzhuan Xu
    • 1
    • 3
  • Jiangjian Shi
    • 1
    • 3
  • Huijue Wu
    • 1
    • 3
  • Yanhong Luo
    • 1
    • 3
  • Dongmei Li
    • 1
    • 3
    Email author
  • Akira Fujishima
    • 2
    Email author
  • Qingbo Meng
    • 1
    • 3
    Email author
  1. 1.Key Laboratory for Renewable EnergyChinese Academy of Sciences (CAS), Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, CASBeijingChina
  2. 2.Photocatalysis International Research Center, Research Institute for Science and TechnologyTokyo University of ScienceChibaJapan
  3. 3.School of Physical SciencesUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations