Skip to main content

Doxorubicin-loaded silicon nanoparticles impregnated into red blood cells featuring bright fluorescence, strong photostability, and lengthened blood residency

Abstract

Based on the unique advantages of fluorescent silicon nanoparticles (SiNPs), long circulation red blood cells (RBCs), and anti-cancer drug molecules (i.e., doxorubicin (DOX)), we developed multifunctional DOX-loaded SiNPs impregnated into RBCs. Importantly, the resulting drug delivery systems (DDSs) simultaneously exhibited bright fluorescence coupled with robust photostability (i.e., ∼ 24% loss of fluorescent intensity after 25 min continuous laser irradiation) and significantly lengthened blood residency (i.e., t1/2 = 7.31 ± 0.96 h, 3.9-fold longer than pure DOX-loaded SiNPs). Therefore, this novel DDS featuring multi-functionalities shows high potential for cancer diagnosis and therapy, particularly for tumor imaging and chemotherapy in a synchronous manner.

This is a preview of subscription content, access via your institution.

References

  1. Hong, G. S.; Diao, S.; Antaris, A. L.; Dai, H. J. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem. Rev. 2015, 115, 10816–10906.

    Article  Google Scholar 

  2. Yan, J.; Hu, C. Y.; Wang, P.; Zhao, B.; Ouyang, X. Y.; Zhou, J.; Liu, R.; He, D. N.; Fan, C. H.; Song, S. P. Growth and origami folding of DNA on nanoparticles for highefficiency molecular transport in cellular imaging and drug delivery. Angew. Chem., Int. Ed. 2015, 54, 2431–2435.

    Article  Google Scholar 

  3. Yoo, J.-W.; Irvine, D. J.; Discher, D. E.; Mitragotri, S. Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat. Rev. Drug Discov. 2011, 10, 521–535.

    Article  Google Scholar 

  4. Meyer, R. A.; Sunshine, J. C.; Green, J. J. Biomimetic particles as therapeutics. Trends Biotechnol. 2015, 33, 514–524.

    Article  Google Scholar 

  5. Tibbitt, M. W.; Dahlman, J. E.; Langer, R. Emerging frontiers in drug delivery. J. Am. Chem. Soc. 2016, 138, 704–717.

    Article  Google Scholar 

  6. Parodi, A.; Quattrocchi, N.; Van De Ven, A. L.; Chiappini, C.; Evangelopoulos, M.; Martinez, J. O.; Brown, B. S.; Khaled, S. Z.; Yazdi, I. K.; Enzo, M. V. et al. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat. Nanotechnol. 2013, 8, 61–68.

    Article  Google Scholar 

  7. Fang, R. H.; Hu, C.-M. J.; Luk, B. T.; Gao, W. W.; Copp, J. A.; Tai, Y. Y.; O’Connor, D. E.; Zhang, L. F. Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Lett. 2014, 14, 2181–2188.

    Article  Google Scholar 

  8. Gao, W. W.; Fang, R. H.; Thamphiwatana, S.; Luk, B. T.; Li, J. M.; Angsantikul, P. Z.; Zhang, Q. Z.; Hu, C.-M. J.; Zhang, L. F. Modulating antibacterial immunity via bacterial membrane-coated nanoparticles. Nano Lett. 2015, 15, 1403–1409.

    Article  Google Scholar 

  9. Hu, C.-M. J.; Fang, R. H.; Wang, K.-C.; Luk, B. T.; Thamphiwatana, S.; Dehaini, D.; Nguyen, P.; Angsantikul, P.; Wen, C. H.; Kroll, A. V. et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature 2015, 526, 118–121.

    Article  Google Scholar 

  10. Raemdonck, K.; Braeckmans, K.; Demeester, J.; De Smedt, S. C. Merging the best of both worlds: Hybrid lipidenveloped matrix nanocomposites in drug delivery. Chem. Soc. Rev. 2014, 43, 444–472.

    Article  Google Scholar 

  11. Sun, X. Q.; Wang, C.; Gao, M.; Hu, A. Y.; Liu, Z. Remotely controlled red blood cell carriers for cancer targeting and near-infrared light-triggered drug release in combined photothermal-chemotherapy. Adv. Funct. Mater. 2015, 25, 2386–2394.

    Article  Google Scholar 

  12. Green, J. J.; Elisseeff, J. H. Mimicking biological functionality with polymers for biomedical applications. Nature 2016, 540, 386–394.

    Article  Google Scholar 

  13. Magnani, M.; Sfara, C.; Antonelli, A. Intravascular contrast agents in diagnostic applications: Use of red blood cells to improve the lifespan and efficacy of blood pool contrast agents. Nano Res. 2017, 10, 731–766.

    Article  Google Scholar 

  14. Shi, J.; Kundrat, L.; Pishesha, N.; Bilate, A.; Theile, C.; Maruyama, T.; Dougan, S. K.; Ploegh, H. L.; Lodish, H. F. Engineered red blood cells as carriers for systemic delivery of a wide array of functional probes. Proc. Natl. Acad. Sci. USA 2014, 111, 10131–10136.

    Article  Google Scholar 

  15. Peng, F.; Tu, Y. F.; van Hest, J. C. M.; Wilson, D. A. Self-guided supramolecular cargo-loaded nanomotors with chemotactic behavior towards cells. Angew. Chem., Int. Ed. 2015, 54, 11662–11665.

    Article  Google Scholar 

  16. Hu, C.-M. J.; Zhang, L.; Aryal, S.; Cheung, C.; Fang, R. H.; Zhang, L. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl. Acad. Sci. USA 2011, 108, 10980–10985.

    Article  Google Scholar 

  17. Luk, B. T.; Fang, R. H.; Hu, C.-M. J.; Copp, J. A.; Thamphiwatana, S.; Dehaini, D.; Gao, W. W.; Zhang, K.; Li, S. L.; Zhang, L. F. Safe and immunocompatible nanocarriers cloaked in RBC membranes for drug delivery to treat solid tumors. Theranostics 2016, 6, 1004–1011.

    Article  Google Scholar 

  18. Fu, Q.; Lv, P. P.; Chen, Z. K.; Ni, D. Z.; Zhang, L. J.; Yue, H.; Yue, Z. G.; Wei, W.; Ma, G. H. Programmed co-delivery of paclitaxel and doxorubicin boosted by camouflaging with erythrocyte membrane. Nanoscale 2015, 7, 4020–4030.

    Article  Google Scholar 

  19. Zhou, J.; Yang, Y.; Zhang, C.-Y. Toward biocompatible semiconductor quantum dots: From biosynthesis and bioconjugation to biomedical application. Chem. Rev. 2015, 115, 11669–11717.

    Article  Google Scholar 

  20. Blanco, E.; Shen, H. F.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33, 941–951.

    Article  Google Scholar 

  21. Wu, Z. G.; de Ávila, B. E.-F.; Martín, A.; Christianson, C.; Gao, W. W.; Thamphiwatana, S. K.; Escarpa, A.; He, Q.; Zhang, L. F.; Wang, J. RBC micromotors carrying multiple cargos towards potential theranostic applications. Nanoscale 2015, 7, 13680–13686.

    Article  Google Scholar 

  22. Dehaini, D.; Wei, X. L.; Fang, R. H.; Masson, S.; Angsantikul, P.; Luk, B. T.; Zhang, Y.; Ying, M.; Jiang, Y.; Kroll, A. V. et al. Erythrocyte-platelet hybrid membrane coating for enhanced nanoparticle functionalization. Adv. Mater. 2017, 29, 1606209.

    Article  Google Scholar 

  23. Howes, P. D.; Chandrawati, R.; Stevens, M. M. Colloidal nanoparticles as advanced biological sensors. Science 2014, 346, 1247390.

    Article  Google Scholar 

  24. Qing, Q.; Jiang, Z.; Xu, L.; Gao, R. X.; Mai, L. Q.; Lieber, C. M. Free-standing kinked nanowire transistor probes for targeted intracellular recording in three dimensions. Nat. Nanotechnol. 2014, 9, 142–147.

    Article  Google Scholar 

  25. Cheng, X. Y.; Lowe, S. B.; Reece, P. J.; Gooding, J. J. Colloidal silicon quantum dots: From preparation to the modification of self-assembled monolayers (SAMs) for bio-applications. Chem. Soc. Rev. 2014, 43, 2680–2700.

    Article  Google Scholar 

  26. Yu, T.; Wang, F.; Xu, Y.; Ma, L. L.; Pi, X. D.; Yang, D. R. Graphene coupled with silicon quantum dots for highperformance bulk-silicon-based Schottky-Junction photodetectors. Adv. Mater. 2016, 28, 4912–4919.

    Article  Google Scholar 

  27. Kim, D.; Zuidema, J. M.; Kang, J.; Pan, Y. L.; Wu, L. B.; Warther, D.; Arkles, B.; Sailor, M. J. Facile surface modification of hydroxylated silicon nanostructures using heterocyclic silanes. J. Am. Chem. Soc. 2016, 138, 15106–15109.

    Article  Google Scholar 

  28. McVey, B. F. P.; Tilley, R. D. Solution synthesis, optical properties, and bioimaging applications of silicon nanocrystals. Acc. Chem. Res. 2014, 47, 3045–3051.

    Article  Google Scholar 

  29. Peng, F.; Su, Y. Y.; Zhong, Y. L.; Fan, C. H.; Lee, S.-T.; He, Y. Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy. Acc. Chem. Res. 2014, 47, 612–623.

    Article  Google Scholar 

  30. Montalti, M.; Cantelli, A.; Battistelli, G. Nanodiamonds and silicon quantum dots: Ultrastable and biocompatible luminescent nanoprobes for long-term bioimaging. Chem. Soc. Rev. 2015, 44, 4853–4921.

    Article  Google Scholar 

  31. Pang, J. Y.; Su, Y. Y.; Zhong, Y. L.; Peng, F.; Song, B.; He, Y. Fluorescent silicon nanoparticle-based gene carriers featuring strong photostability and feeble cytotoxicity. Nano Res. 2016, 9, 3027–3037.

    Article  Google Scholar 

  32. Zhong, Y. L.; Peng, F.; Bao, F.; Wang, S. Y.; Ji, X. Y.; Yang, L.; Su, Y. Y.; Lee, S.-T.; He, Y. Large-scale aqueous synthesis of fluorescent and biocompatible silicon nanoparticles and their use as highly photostable biological probes. J. Am. Chem. Soc. 2013, 135, 8350–8356.

    Article  Google Scholar 

  33. Li, Q.; Luo, T.-Y.; Zhou, M.; Abroshan, H.; Huang, J. C.; Kim, H. J.; Rosi, N. L.; Shao, Z. Z.; Jin, R. C. Silicon nanoparticles with surface nitrogen: 90% quantum yield with narrow luminescence bandwidth and the ligand structure based energy law. ACS Nano 2016, 10, 8385–8393.

    Article  Google Scholar 

  34. Ji, X. Y.; Peng, F.; Zhong, Y. L.; Su, Y. Y.; Jiang, X. X.; Song, C. X.; Yang, L.; Chu, B. B.; Lee, S.-T.; He, Y. Highly fluorescent, photostable, and ultrasmall silicon drug nanocarriers for long-term tumor cell tracking and in-vivo cancer therapy. Adv. Mater. 2015, 27, 1029–1034.

    Article  Google Scholar 

  35. Petros, R. A.; DeSimone, J. M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 2010, 9, 615–627.

    Article  Google Scholar 

  36. Vallet-Regí, M.; Balas, F.; Arcos, D. Mesoporous materials for drug delivery. Angew. Chem., Int. Ed. 2007, 46, 7548–7558.

    Article  Google Scholar 

  37. Peng, F.; Su, Y. Y.; Wei, X.; Lu, Y. P.; Zhou, Y. F.; Zhong, Y. L.; Lee, S.-T.; He, Y. Silicon-nanowire-based nanocarriers with ultrahigh drug-loading capacity for in vitro and in vivo cancer therapy. Angew. Chem., Int. Ed. 2013, 52, 1457–1461.

    Article  Google Scholar 

  38. Kolesnikova, T. A.; Skirtach, A. G.; Möhwald, H. Red blood cells and polyelectrolyte multilayer capsules: Natural carriers versus polymer-based drug delivery vehicles. Exp. Opin. Drug Deliv. 2013, 10, 47–58.

    Article  Google Scholar 

  39. Wang, C.; Sun, X. Q.; Cheng, L.; Yin, S. N.; Yang, G. B.; Li, Y. G.; Liu, Z. Multifunctional theranostic red blood cells for magnetic-field-enhanced in vivo combination therapy of cancer. Adv. Mater. 2014, 26, 4794–4802.

    Article  Google Scholar 

  40. Purow, B.; Schiff, D. Advances in the genetics of glioblastoma: Are we reaching critical mass? Nat. Rev. Neurol. 2009, 5, 419–426.

    Article  Google Scholar 

  41. Zhong, Y. L.; Peng, F.; Wei, X. P.; Zhou, Y. F.; Wang, J.; Jiang, X. X.; Su, Y. Y.; Su, S.; Lee, S. T.; He, Y. Microwaveassisted synthesis of biofunctional and fluorescent silicon nanoparticles using proteins as hydrophilic ligands. Angew. Chem., Int. Ed. 2012, 51, 8485–8489.

    Article  Google Scholar 

  42. Luk, B. T.; Zhang, L. F. Cell membrane-camouflaged nanoparticles for drug delivery. J. Control. Release 2015, 220, 600–607.

    Article  Google Scholar 

  43. Li, B. L.; Setyawati, M. I.; Chen, L. Y.; Xie, J. P.; Ariga, K.; Lim, C.-T.; Garaj, S.; Leong, D. T. Directing assembly and disassembly of 2D MoS2 nanosheets with DNA for drug delivery. ACS Appl. Mater. Interfaces 2017, 9, 15286–15296.

    Article  Google Scholar 

  44. Rim, H. P.; Min, K. H.; Lee, H. J.; Jeong, S. Y.; Lee, S. C. pH-tunable calcium phosphate covered mesoporous silica nanocontainers for intracellular controlled release of guest drugs. Angew. Chem., Int. Ed. 2011, 50, 8853–8857.

    Article  Google Scholar 

  45. Minchinton, A. I.; Tannock, I. F. Drug penetration in solid tumours. Nat. Rev. Cancer 2006, 6, 583–592.

    Article  Google Scholar 

  46. Ren, X. Q.; Zheng, R.; Fang, X. L.; Wang, X. F.; Zhang, X. Y.; Yang, W. L.; Sha, X. Y. Red blood cell membrane camouflaged magnetic nanoclusters for imaging-guided photothermal therapy. Biomaterials 2016, 92, 13–24.

    Article  Google Scholar 

  47. Su, J. H.; Sun, H. P.; Meng, Q. S.; Yin, Q.; Tang, S.; Zhang, P. C.; Chen, Y.; Zhang, Z. W.; Yu, H. J.; Li, Y. P. Long circulation red-blood-cell-mimetic nanoparticles with peptideenhanced tumor penetration for simultaneously inhibiting growth and lung metastasis of breast cancer. Adv. Funct. Mater. 2016, 26, 1243–1252.

    Article  Google Scholar 

  48. Setyawati, M. I.; Tay, C. Y.; Docter, D.; Stauber, R. H.; Leong, D. T. Understanding and exploiting nanoparticles’ intimacy with the blood vessel and blood. Chem. Soc. Rev. 2015, 44, 8174–8199.

    Article  Google Scholar 

  49. Setyawati, M. I.; Tay, C. Y.; Chia, S. L.; Goh, S. L.; Fang, W.; Neo, M. J.; Chong, H. C.; Tan, S. M.; Loo, S. C.; Ng, K. W. et al. Titanium dioxide nanomaterials cause endothelial cell leakiness by disrupting the homophilic interaction of VE-cadherin. Nat. Commun. 2013, 4, 1673.

    Article  Google Scholar 

  50. Setyawati, M. I.; Mochalin, V. N.; Leong, D. T. Tuning endothelial permeability with functionalized nanodiamonds. ACS Nano 2016, 10, 1170–1181.

    Article  Google Scholar 

  51. Tay, C. Y.; Setyawati, M. I.; Leong, D. T. Nanoparticle density: A critical biophysical regulator of endothelial permeability. ACS Nano 2017, 11, 2764–2772.

    Article  Google Scholar 

  52. Setyawati, M. I.; Tay, C. Y.; Bay, B. H.; Leong, D. T. Gold nanoparticles induced endothelial leakiness depends on particle size and endothelial cell origin. ACS Nano 2017, 11, 5020–5030.

    Article  Google Scholar 

Download references

Acknowledgements

We express our grateful thanks to Prof. Shuit-Tong Lee for general help and valuable suggestion. We appreciate financial support from the National Basic Research Program of China (No. 2013CB934400), the National Natural Science Foundation of China (Nos. 61361160412 and 31400860), and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), 111 Project as well as Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao He.

Electronic supplementary material

12274_2017_1850_MOESM1_ESM.pdf

Doxorubicin-loaded silicon nanoparticles impregnated into red blood cells featuring bright fluorescence, strong photostability, and lengthened blood residency

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiang, A., Song, B., Ji, X. et al. Doxorubicin-loaded silicon nanoparticles impregnated into red blood cells featuring bright fluorescence, strong photostability, and lengthened blood residency. Nano Res. 11, 2285–2294 (2018). https://doi.org/10.1007/s12274-017-1850-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1850-6

Keywords

  • fluorescent silicon nanoparticles
  • multi-function
  • red blood cells
  • drug delivery system