Skip to main content

Selective toxicity of hydroxyl-rich carbon nanodots for cancer research


The toxicity of nanoparticles in a biological system is an integration of effects arising from surface functionality, particle size, ionic dissolution, etc. This complexity suggests that generalization of a material’s toxicity may be inappropriate. Moreover, from a medicinal point of view, toxicity can be used for treatment of malignant cells, such as cancer. In this study, highly biocompatible carbon nanodots (gCDs) were synthesized by reacting citric acid and urea in glycerol, which resulted in abundant hydroxyl functional groups on the particle surface. gCDs show excitation-dependent photoluminescence but with bright green to yellow emission. Importantly, a series of toxicity assessments showed that as-synthesized gCDs possessed exceptional biocompatibilities to various biological entities including 18 bacteria species, Petunia axillaris seedlings, and Artemia franciscana nauplii. Furthermore, the particles were shown to have low to no toxic effects on human embryonic kidney (HEK-293), breast (MCF-7), and oral squamous (CAL-27) carcinoma cell lines. Of particular interest, the gCDs displayed antiproliferative activities against ovarian choriocarcinoma cells (JAr/Jeg-3 cell lines), which may be further explored for cancer drug discovery.

This is a preview of subscription content, access via your institution.


  1. [1]

    Prasad, P. N. Introduction to Nanomedicine and Nanobioengineering; John Wiley & Sons: Hoboken, 2012.

    Google Scholar 

  2. [2]

    Baker, S. N.; Baker, G. A. Luminescent carbon nanodots: Emergent nanolights. Angew. Chem., Int. Ed. 2010, 49, 6726–6744.

    Article  Google Scholar 

  3. [3]

    Li, Q.; Ohulchanskyy, T. Y.; Liu, R. L.; Koynov, K.; Wu, D. Q.; Best, A.; Kumar, R.; Bonoiu, A.; Prasad, P. N. Photoluminescent carbon dots as biocompatible nanoprobes for targeting cancer cells in vitro. J. Phys. Chem. C 2010, 114, 12062–12068.

    Article  Google Scholar 

  4. [4]

    Zhu, S. J.; Meng, Q. N.; Wang, L.; Zhang, J. H.; Song, Y. B.; Jin, H.; Zhang, K.; Sun, H. C.; Wang, H. Y.; Yang, B. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem., Int. Ed. 2013, 52, 3953–3957.

    Article  Google Scholar 

  5. [5]

    Nie, H.; Li, M. J.; Li, Q. S.; Liang, S. J.; Tan, Y. Y.; Sheng, L.; Shi, W.; Zhang, S. X.-A. Carbon dots with continuously tunable full-colour emission and their application in ratiometric pH sensing. Chem. Mater. 2014, 26, 3104–3112.

    Article  Google Scholar 

  6. [6]

    Kim, T. H.; Wang, F.; McCormick, P.; Wang, L. Z.; Brown, C.; Li, Q. Salt-embedded carbon nanodots as a UV and thermal stable fluorophore for light-emitting diodes. J. Lumin. 2014, 154, 1–7.

    Article  Google Scholar 

  7. [7]

    Kim, T. H.; White, A. R.; Sirdaarta, J. P.; Ji, W. Y.; Cock, I. E.; St. John, J.; Boyd, S. E.; Brown, C. L.; Li, Q. Yellow-emitting carbon nanodots and their flexible and transparent films for white LEDs. ACS Appl. Mater. Interfaces 2016, 8, 33102–33111.

    Article  Google Scholar 

  8. [8]

    Hong, G. S.; Diao, S.; Antaris, A. L.; Dai, H. J. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem. Rev. 2015, 115, 10816–10906.

    Article  Google Scholar 

  9. [9]

    Zeng, Q. H.; Shao, D.; He, X.; Ren, Z. Y.; Ji, W. Y.; Shan, C. X.; Qu, S. N.; Li, J.; Chen, L.; Li, Q. Carbon dots as a trackable drug delivery carrier for localized cancer therapy in vivo. J. Mater. Chem. B 2016, 4, 5119–5126.

    Article  Google Scholar 

  10. [10]

    Cao, L.; Meziani, M. J.; Sahu, S.; Sun, Y. P. Photoluminescence properties of graphene versus other carbon nanomaterials. Acc. Chem. Res. 2013, 46, 171–180.

    Article  Google Scholar 

  11. [11]

    Zhu, H.; Wang, X. L.; Li, Y. L.; Wang, Z. J.; Yang, F.; Yang, X. R. Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chem. Commun. 2009, 5118–5120.

    Google Scholar 

  12. [12]

    Wang, F.; Pang, S. P.; Wang, L.; Li, Q.; Kreiter, M.; Liu, C. Y. One-step synthesis of highly luminescent carbon dots in noncoordinating solvents. Chem. Mater. 2010, 22, 4528–4530.

    Article  Google Scholar 

  13. [13]

    Ding, H.; Yu, S. B.; Wei, J. S.; Xiong, H. M. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 2016, 10, 484–491.

    Article  Google Scholar 

  14. [14]

    Strauss, V.; Margraf, J. T.; Dolle, C.; Butz, B.; Nacken, T. J.; Walter, J.; Bauer, W.; Peukert, W.; Spiecker, E.; Clark, T. et al. Carbon nanodots: Toward a comprehensive understanding of their photoluminescence. J. Am. Chem. Soc. 2014, 136, 17308–17316.

    Article  Google Scholar 

  15. [15]

    Zhu, S. J.; Zhang, J. H.; Tang, S. J.; Qiao, C. Y.; Wang, L.; Wang, H. Y.; Liu, X.; Li, B.; Li, Y. F.; Yu, W. L. et al. Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: From fluorescence mechanism to up-conversion bioimaging applications. Adv. Funct. Mater. 2012, 22, 4732–4740.

    Article  Google Scholar 

  16. [16]

    Kim, T. H.; Ho, H. W.; Brown, C. L.; Cresswell, S. L.; Li, Q. Amine-rich carbon nanodots as a fluorescence probe for methamphetamine precursors. Anal. Methods 2015, 7, 6869–6876.

    Article  Google Scholar 

  17. [17]

    Di Trapani, G.; Perkins, A.; Clarke, F. Production and secretion of thioredoxin from transformed human trophoblast cells. Mol. Hum. Reprod. 1998, 4, 369–375.

    Article  Google Scholar 

  18. [18]

    Toyokuni, S.; Okamoto, K.; Yodoi, J.; Hiai, H. Persistent oxidative stress in cancer. FEBS Lett. 1995, 358, 1–3.

    Article  Google Scholar 

  19. [19]

    Tang, L. B.; Ji, R. B.; Li, X. M.; Bai, G. X.; Liu, C. P.; Hao, J. H.; Lin, J. Y.; Jiang, H. X.; Teng, K. S.; Yang, Z. B. et al. Deep ultraviolet to near-infrared emission and photoresponse in layered N-doped graphene quantum dots. ACS Nano 2014, 8, 6312–6320.

    Article  Google Scholar 

  20. [20]

    Titirici, M.-M.; Antonietti, M. Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization. Chem. Soc. Rev. 2010, 39, 103–116.

    Article  Google Scholar 

  21. [21]

    Li, X. M.; Zhang, S. L.; Kulinich, S. A.; Liu, Y. L.; Zeng, H. B. Engineering surface states of carbon dots to achieve controllable luminescence for solid-luminescent composites and sensitive Be2+ detection. Sci. Rep. 2014, 4, 4976.

    Article  Google Scholar 

  22. [22]

    Nimlos, M. R.; Blanksby, S. J.; Qian, X. H.; Himmel, M. E.; Johnson, D. K. Mechanisms of glycerol dehydration. J. Phys. Chem. A 2006, 110, 6145–6156.

    Article  Google Scholar 

  23. [23]

    Bühler, W.; Dinjus, E.; Ederer, H. J.; Kruse, A.; Mas, C. Ionic reactions and pyrolysis of glycerol as competing reaction pathways in near- and supercritical water. J. Supercrit. Fluids 2002, 22, 37–53.

    Article  Google Scholar 

  24. [24]

    Krysmann, M. J.; Kelarakis, A.; Dallas, P.; Giannelis, E. P. Formation mechanism of carbogenic nanoparticles with dual photoluminescence emission. J. Am. Chem. Soc. 2012, 134, 747–750.

    Article  Google Scholar 

  25. [25]

    Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

    Article  Google Scholar 

  26. [26]

    Amarnath, C. A.; Hong, C. E.; Kim, N. H.; Ku, B.-C.; Kuila, T.; Lee, J. H. Efficient synthesis of graphene sheets using pyrrole as a reducing agent. Carbon 2011, 49, 3497–3502.

    Article  Google Scholar 

  27. [27]

    Chang, P. R.; Jian, R. J.; Zheng, P. W.; Yu, J. G.; Ma, X. F. Preparation and properties of glycerol plasticized-starch (GPS)/cellulose nanoparticle (CN) composites. Carbohydr. Polym. 2010, 79, 301–305.

    Article  Google Scholar 

  28. [28]

    Williams, D. H.; Fleming, I. Spectroscopic Methods in Organic Chemistry; 6th ed. McGraw-Hill Higher Education: New York, 2008.

    Google Scholar 

  29. [29]

    Unni, S. M.; Devulapally, S.; Karjule, N.; Kurungot, S. Graphene enriched with pyrrolic coordination of the doped nitrogen as an efficient metal-free electrocatalyst for oxygen reduction. J. Mater. Chem. 2012, 22, 23506–23513.

    Article  Google Scholar 

  30. [30]

    Pels, J. R.; Kapteijn, F.; Moulijn, J. A.; Zhu, Q.; Thomas, K. M. Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon 1995, 33, 1641–1653.

    Article  Google Scholar 

  31. [31]

    Tian, F. Y.; Cui, Y. X.; Teplyakov, A. V. Nitroxidation of H-terminated Si(111) surfaces with nitrobenzene and nitrosobenzene. J. Phys. Chem. C 2014, 118, 502–512.

    Article  Google Scholar 

  32. [32]

    Hammond, C.; Lopez-Sanchez, J. A.; Hasbi Ab Rahim, M.; Dimitratos, N.; Jenkins, R. L.; Carley, A. F.; He, Q.; Kiely, C. J.; Knight, D. W.; Hutchings, G. J. Synthesis of glycerol carbonate from glycerol and urea with gold-based catalysts. Dalton Trans. 2011, 40, 3927–3937.

    Article  Google Scholar 

  33. [33]

    Seredych, M.; Hulicova-Jurcakova, D.; Lu, G. Q.; Bandosz, T. J. Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance. Carbon 2008, 46, 1475–1488.

    Article  Google Scholar 

  34. [34]

    Lin, Z. Y.; Waller, G.; Liu, Y.; Liu, M. L.; Wong, C.-P. Facile synthesis of nitrogen-doped graphene via pyrolysis of graphene oxide and urea, and its electrocatalytic activity toward the oxygen-reduction reaction. Adv. Energy Mater. 2012, 2, 884–888.

    Article  Google Scholar 

  35. [35]

    Dong, F.; Wu, L. W.; Sun, Y. J.; Fu, M.; Wu, Z. B.; Lee, S. C. Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts. J. Mater. Chem. 2011, 21, 15171–15174.

    Article  Google Scholar 

  36. [36]

    Bhunia, S. K.; Saha, A.; Maity, A. R.; Ray, S. C.; Jana, N. R. Carbon nanoparticle-based fluorescent bioimaging probes. Sci. Rep. 2013, 3, 1473.

    Article  Google Scholar 

  37. [37]

    Ruebhart, D. R.; Wickramasinghe, W.; Cock, I. E. Protective efficacy of the antioxidants vitamin E and trolox against Microcystis aeruginosa and microcystin-LR in Artemia franciscana nauplii. J. Toxicol. Environ. Health A 2009, 72, 1567–1575.

    Article  Google Scholar 

  38. [38]

    Naim, F.; Nakasugi, K.; Crowhurst, R. N.; Hilario, E.; Zwart, A. B.; Hellens, R. P.; Taylor, J. M.; Waterhouse, P. M.; Wood, C. C. Advanced engineering of lipid metabolism in nicotiana benthamiana using a draft genome and the V2 viral silencing-suppressor protein. PLoS One 2012, 7, e52717.

    Article  Google Scholar 

  39. [39]

    Leroueil, P. R.; Hong, S.; Mecke, A.; Baker, J. R.; Orr, B. G.; Holl, M. M. B. Nanoparticle interaction with biological membranes: Does nanotechnology present a Janus face? Acc. Chem. Res. 2007, 40, 335–342.

    Article  Google Scholar 

  40. [40]

    Thun, M. J.; Henley, S. J.; Patrono, C. Nonsteroidal anti-inflammatory drugs as anticancer agents: Mechanistic, pharmacologic, and clinical issues. J. Natl. Cancer Inst. 2002, 94, 252–266.

    Article  Google Scholar 

  41. [41]

    Brancale, A.; Silvestri, R. Indole, a core nucleus for potent inhibitors of tubulin polymerization. Med. Res. Rev. 2007, 27, 209–238.

    Article  Google Scholar 

  42. [42]

    Brigger, I.; Dubernet, C.; Couvreur, P. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev. 2012, 64, 24–36.

    Article  Google Scholar 

  43. [43]

    Fratoddi, I.; Venditti, I.; Cametti, C.; Russo, M. V. How toxic are gold nanoparticles? The state-of-the-art. Nano Res. 2015, 8, 1771–1799.

    Article  Google Scholar 

  44. [44]

    Urig, S.; Becker, K. On the potential of thioredoxin reductase inhibitors for cancer therapy. Semin. Cancer Biol. 2006, 16, 452–465.

    Article  Google Scholar 

  45. [45]

    Gromer, S.; Arscott, L. D.; Williams C. H., Jr.; Schirmer, R. H.; Becker, K. Human placenta thioredoxin reductase. Isolation of the selenoenzyme, steady state kinetics, and inhibition by therapeutic gold compounds. J. Biol. Chem. 1998, 273, 20096–20101.

    Article  Google Scholar 

  46. [46]

    Fang, J.; Holmgren, A. Inhibition of thioredoxin and thioredoxin reductase by 4-hydroxy-2-nonenal in vitro and in vivo. J. Am. Chem. Soc. 2006, 128, 1879–1885.

    Article  Google Scholar 

  47. [47]

    Srivastava, M.; Singh, S.; Self, W. T. Exposure to silver nanoparticles inhibits selenoprotein synthesis and the activity of thioredoxin reductase. Environ. Health Perspect. 2012, 120, 56–61.

    Article  Google Scholar 

  48. [48]

    Fu, M.; Ehrat, F.; Wang, Y.; Milowska, K. Z.; Reckmeier, C.; Rogach, A. L.; Stolarczyk, J. K.; Urban, A. S.; Feldmann, J. Carbon dots: A unique fluorescent cocktail of polycyclic aromatic hydrocarbons. Nano Lett. 2015, 15, 6030–6035.

    Article  Google Scholar 

Download references


T. K. acknowledges the support of Australian Postgraduate Award and Queensland Smart Futures PhD Scholarship. Q. L. acknowledges Griffith University Research Infrastructure Funding and Griffith School of Engineering Research Seed Funding. The authors acknowledge Dr. Barry Wood at the University of Queensland for his assistance in XPS analyses, Dr. Fatima Naim at Queensland University of Technology for her assistance in plant toxicity assessments, and Dr. Giovanna Di Trapani for discussions on the TRx system.

Author information



Corresponding author

Correspondence to Qin Li.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, T.H., Sirdaarta, J.P., Zhang, Q. et al. Selective toxicity of hydroxyl-rich carbon nanodots for cancer research. Nano Res. 11, 2204–2216 (2018).

Download citation


  • carbon nanodots
  • nanotoxicity
  • fluorescence
  • choriocarcinoma cells
  • thioredoxin reductase