Cross-linked self-assembling peptide scaffolds

Abstract

Self-assembling peptides (SAPs) are synthetic bioinspired biomaterials that can be feasibly multi-functionalized for cell transplantation and/or drug delivery therapies. Despite their superior biocompatibility and ease of scaling-up for production, they are unfortunately hampered by weak mechanical properties due to transient non-covalent interactions among and within the self-assembled peptide chains, thus limiting their potential applications as fillers, hemostat solutions, and fragile scaffolds for soft tissues. Here, we have developed and characterized a cross-linking strategy that increases both the stiffness and the tailorability of SAP hydrogels, enabling the preparation of transparent flexible threads, discs, channels, and hemispherical constructs. Empirical and computational results, in close agreement with each other, confirmed that the cross-linking reaction does not affect the previously self-assembled secondary structures. In vitro tests also provided a first hint of satisfactory biocompatibility by favoring viability and differentiation of human neural stem cells. This work could bring self-assembling peptide technology to many applications that have been precluded so far, especially in regenerative medicine.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    Matson, J. B.; Stupp, S. I. Self-assembling peptide scaffolds for regenerative medicine. Chem. Commun. 2012, 48, 26–33.

    Article  Google Scholar 

  2. [2]

    Saracino, G. A. A.; Cigognini, D.; Silva, D.; Caprini, A.; Gelain, F. Nanomaterials design and tests for neural tissue engineering. Chem. Soc. Rev. 2013, 42, 225–262.

    Article  Google Scholar 

  3. [3]

    Morgan, C. E.; Dombrowski, A. W.; Rubert Pérez, C. M.; Bahnson, E. S. M.; Tsihlis, N. D.; Jiang, W. L.; Jiang, Q.; Vercammen, J. M.; Prakash, V. S.; Pritts, T. A. et al. Tissue-factor targeted peptide amphiphile nanofibers as an injectable therapy to control hemorrhage. ACS Nano 2016, 10, 899–909.

    Article  Google Scholar 

  4. [4]

    Ozeki, M.; Kuroda, S.; Kon, K.; Kasugai, S. Differentiation of bone marrow stromal cells into osteoblasts in a self-assembling peptide hydrogel: In vitro and in vivo studies. J. Biomater. Appl. 2011, 25, 663–684.

    Article  Google Scholar 

  5. [5]

    Schneider, A.; Garlick, J. A.; Egles, C. Self-assembling peptide nanofiber scaffolds accelerate wound healing. PLoS One 2008, 3, e1410.

    Article  Google Scholar 

  6. [6]

    Loo, Y.; Wong, Y. C.; Cai, E. Z.; Ang, C. H.; Raju, A.; Lakshmanan, A.; Koh, A. G.; Zhou, H. J.; Lim, T. C.; Moochhala, S. M. et al. Ultrashort peptide nanofibrous hydrogels for the acceleration of healing of burn wounds. Biomaterials 2014, 35, 4805–4814.

    Article  Google Scholar 

  7. [7]

    Tysseling-Mattiace, V. M.; Sahni, V.; Niece, K. L.; Birch, D.; Czeisler, C.; Fehlings, M. G.; Stupp, S. I.; Kessler, J. A. Self-assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury. J. Neurosci. 2008, 28, 3814–3823.

    Article  Google Scholar 

  8. [8]

    Yan, C. Q.; Pochan, D. J. Rheological properties of peptide-based hydrogels for biomedical and other applications. Chem. Soc. Rev. 2010, 39, 3528–3540.

    Article  Google Scholar 

  9. [9]

    Davis, M. E.; Michael Motion, J. P.; Narmoneva, D. A.; Takahashi, T.; Hakuno, D.; Kamm, R. D.; Zhang, S.; Lee, R. T. Injectable self-assembling peptide nanofibers create intramyocardial microenvironments for endothelial cells. Circulation 2005, 111, 442–450.

    Article  Google Scholar 

  10. [10]

    Cigognini, D.; Silva, D.; Paloppi, S.; Gelain, F. Evaluation of mechanical properties and therapeutic effect of injectable self-assembling hydrogels for spinal cord injury. J. Biomed. Nanotechnol. 2014, 10, 309–323.

    Article  Google Scholar 

  11. [11]

    Tao, H.; Wu, Y. H.; Li, H. F.; Wang, C. F.; Zhang, Y.; Li, C.; Wen, T. Y.; Wang, X. M.; He, Q.; Wang, D. L. et al. BMP7-based functionalized self-assembling peptides for nucleus pulposus tissue engineering. ACS Appl. Mater. Interfaces 2015, 7, 17076–17087.

    Article  Google Scholar 

  12. [12]

    Tatman, P. D.; Gerull, W.; Sweeney-Easter, S.; Davis, J. I.; Gee, A. O.; Kim, D. H. Multiscale biofabrication of articular cartilage: Bioinspired and biomimetic approaches. Tissue Eng. B Rev. 2015, 21, 543–559.

    Article  Google Scholar 

  13. [13]

    Brunton, P. A.; Davies, R. P.; Burke, J. L.; Smith, A.; Aggeli, A.; Brookes, S. J.; Kirkham, J. Treatment of early caries lesions using biomimetic self-assembling peptides—A clinical safety trial. Br. Dent. J. 2013, 215, E6.

    Article  Google Scholar 

  14. [14]

    Sang, L. Y. H.; Liang, Y. X.; Li, Y.; Wong, W. M.; Tay, D. K. C.; So, K. F.; Ellis-Behnke, R. G.; Wu, W. T.; Cheung, R. T. F. A self-assembling nanomaterial reduces acute brain injury and enhances functional recovery in a rat model of intracerebral hemorrhage. Nanomed.: Nanotechnol. Biol. Med. 2015, 11, 611–620.

    Article  Google Scholar 

  15. [15]

    Guo, J. S.; Leung, K. K.; Su, H. X.; Yuan, Q. J.; Wang, L.; Chu, T. H.; Zhang, W. M.; Pu, J. K. S.; Ng, G. K. P.; Wong, W. M. et al. Self-assembling peptide nanofiber scaffold promotes the reconstruction of acutely injured brain. Nanomed.: Nanotechnol. Biol. Med. 2009, 5, 345–351.

    Article  Google Scholar 

  16. [16]

    Cigognini, D.; Satta, A.; Colleoni, B.; Silva, D.; Donegà, M.; Antonini, S.; Gelain, F. Evaluation of early and late effects into the acute spinal cord injury of an injectable functionalized self-assembling scaffold. PLoS One 2011, 6, e19782.

    Article  Google Scholar 

  17. [17]

    Gelain, F.; Panseri, S.; Antonini, S.; Cunha, C.; Donega, M.; Lowery, J.; Taraballi, F.; Cerri, G.; Montagna, M.; Baldissera, F. et al. Transplantation of nanostructured composite scaffolds results in the regeneration of chronically injured spinal cords. ACS Nano 2011, 5, 227–236.

    Article  Google Scholar 

  18. [18]

    Yang, H. N.; Yang, H. L.; Xie, Z. H.; Wang, P.; Bi, J. Z. Self-assembling nanofibers alter the processing of amyloid precursor protein in a transgenic mouse model of Alzheimer’s disease. Neurol. Res. 2015, 37, 84–91.

    Article  Google Scholar 

  19. [19]

    Xiong, N.; Dong, X. Y.; Zheng, J.; Liu, F. F.; Sun, Y. Design of lvffark and lvffark-functionalized nanoparticles for inhibiting amyloid β-protein fibrillation and cytotoxicity. ACS Appl. Mater. Interfaces 2015, 7, 5650–5662.

    Article  Google Scholar 

  20. [20]

    Caprini, A.; Silva, D.; Zanoni, I.; Cunha, C.; Volontè, C.; Vescovi, A.; Gelain, F. A novel bioactive peptide: Assessing its activity over murine neural stem cells and its potential for neural tissue engineering. N. Biotechnol. 2013, 30, 552–562.

    Article  Google Scholar 

  21. [21]

    Gelain, F.; Unsworth, L. D.; Zhang, S. G. Slow and sustained release of active cytokines from self-assembling peptide scaffolds. J. Control. Rel. 2010, 145, 231–239.

    Article  Google Scholar 

  22. [22]

    Pugliese, R.; Gelain, F. Peptidic biomaterials: From self-assembling to regenerative medicine. Trends Biotechnol. 2016, 35, 145–158.

    Article  Google Scholar 

  23. [23]

    Kasoju, N.; Bora, U. Silk fibroin in tissue engineering. Adv. Healthcare Mater. 2012, 1, 393–412.

    Article  Google Scholar 

  24. [24]

    Ibusuki, S.; Halbesma, G. J.; Randolph, M. A.; Redmond, R. W.; Kochevar, I. E.; Gill, T. J. Photochemically cross-linked collagen gels as three-dimensional scaffolds for tissue engineering. Tissue Eng. 2007, 13, 1995–2001.

    Article  Google Scholar 

  25. [25]

    Ma, L.; Gao, C. Y.; Mao, Z. W.; Zhou, J.; Shen, J. C.; Hu, X. Q.; Han, C. M. Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials 2003, 24, 4833–4841.

    Article  Google Scholar 

  26. [26]

    Olofsson, C.; Ahl, T.; Johansson, T.; Larsson, S.; Nellgård, P.; Ponzer, S.; Fagrell, B.; Przybelski, R.; Keipert, P.; Winslow, N. et al. A multicenter clinical study of the safety and activity of maleimide-polyethylene glycol-modified hemoglobin (hemospan®) in patients undergoing major orthopedic surgery. Anesthesiology 2006, 105, 1153–1163.

    Article  Google Scholar 

  27. [27]

    Gilewski, T.; Ragupathi, G.; Bhuta, S.; Williams, L. J.; Musselli, C.; Zhang, X. F.; Bornmann, W. G.; Spassova, M.; Bencsath, K. P.; Panageas, K. S. et al. Immunization of metastatic breast cancer patients with a fully synthetic globo H conjugate: A phase I trial. Proc. Natl. Acad. Sci. USA 2001, 98, 3270–3275.

    Article  Google Scholar 

  28. [28]

    Björkholm, M.; Fagrell, B.; Przybelski, R.; Winslow, N.; Young, M.; Winslow, R. M. A phase I single blind clinical trial of a new oxygen transport agent (MP4), human hemoglobin modified with maleimide-activated polyethylene glycol. Haematologica 2005, 90, 505–515.

    Google Scholar 

  29. [29]

    Riddles, P. W.; Blakeley, R. L.; Zerner, B. Reassessment of Ellman’s reagent. Methods Enzymol. 1983, 91, 49–60.

    Article  Google Scholar 

  30. [30]

    Riddles, P. W.; Blakeley, R. L.; Zerner, B. Ellman’s reagent: 5,5′-dithiobis(2-nitrobenzoic acid)—a reexamination. Anal. Biochem. 1979, 94, 75–81.

    Article  Google Scholar 

  31. [31]

    Gelain, F.; Silva, D.; Caprini, A.; Taraballi, F.; Natalello, A.; Villa, O.; Nam, K. T.; Zuckermann, R. N.; Doglia, S. M.; Vescovi, A. Bmhp1-derived self-assembling peptides: Hierarchically assembled structures with self-healing propensity and potential for tissue engineering applications. ACS Nano 2011, 5, 1845–1859.

    Article  Google Scholar 

  32. [32]

    Hexemer, A.; Bras, W.; Glossinger, J.; Schaible, E.; Gann, E.; Kirian, R.; MacDowell, A.; Church, M.; Rude, B.; Padmore, H. A SAXS/WAXS/GISAXS beamline with multilayer monochromator. J. Phys.: Conf. Ser. 2010, 247, 012007.

    Google Scholar 

  33. [33]

    Taraballi, F.; Campione, M.; Sassella, A.; Vescovi, A.; Paleari, A.; Hwang, W.; Gelain, F. Effect of functionalization on the self-assembling propensity of β-sheet forming peptides. Soft Matter 2009, 5, 660–668.

    Article  Google Scholar 

  34. [34]

    Marrink, S. J.; Risselada, H. J.; Yefimov, S.; Tieleman, D. P.; de Vries, A. H. The MARTINI force field: Coarse grained model for biomolecular simulations. J. Phys. Chem. B 2007, 111, 7812–7824.

    Article  Google Scholar 

  35. [35]

    Monticelli, L.; Kandasamy, S. K.; Periole, X.; Larson, R. G.; Tieleman, D. P.; Marrink, S. J. The martini coarse-grained force field: Extension to proteins. J. Chem. Theory Comput. 2008, 4, 819–834.

    Article  Google Scholar 

  36. [36]

    Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A. E.; Berendsen, H. J. C. Gromacs: Fast, flexible, and free. J. Comput. Chem. 2005, 26, 1701–1718.

    Article  Google Scholar 

  37. [37]

    Mazzini, L.; Gelati, M.; Profico, D. C.; Sgaravizzi, G.; Projetti Pensi, M.; Muzi, G.; Ricciolini, C.; Rota Nodari, L.; Carletti, S.; Giorgi, C. et al. Human neural stem cell transplantation in als: Initial results from a phase i trial. J. Transl. Med. 2015, 13, 17.

    Article  Google Scholar 

  38. [38]

    Raspa, A.; Saracino, G. A. A.; Pugliese, R.; Silva, D.; Cigognini, D.; Vescovi, A.; Gelain, F. Complementary co-assembling peptides: From in silico studies to in vivo application. Adv. Funct. Mater. 2014, 24, 6317–6328.

    Article  Google Scholar 

  39. [39]

    Zhang, S. G. Fabrication of novel biomaterials through molecular self-assembly. Nat. Biotechnol. 2003, 21, 1171–1178.

    Article  Google Scholar 

  40. [40]

    Haines-Butterick, L.; Rajagopal, K.; Branco, M.; Salick, D.; Rughani, R.; Pilarz, M.; Lamm, M. S.; Pochan, D. J.; Schneider, J. P. Controlling hydrogelation kinetics by peptide design for three-dimensional encapsulation and injectable delivery of cells. Proc. Natl. Acad. Sci. USA 2007, 104, 7791–7796.

    Article  Google Scholar 

  41. [41]

    Ding, Y.; Li, Y.; Qin, M.; Cao, Y.; Wang, W. Photo-crosslinking approach to engineering small tyrosine-containing peptide hydrogels with enhanced mechanical stability. Langmuir 2013, 29, 13299–13306.

    Article  Google Scholar 

  42. [42]

    Khalily, M. A.; Goktas, M.; Guler, M. O. Tuning viscoelastic properties of supramolecular peptide gels via dynamic covalent crosslinking. Org. Biomol. Chem. 2015, 13, 1983–1987.

    Article  Google Scholar 

  43. [43]

    Riener, C. K.; Kada, G.; Gruber, H. J. Quick measurement of protein sulfhydryls with Ellman’s reagent and with 4,4′-dithiodipyridine. Anal. Bioanal. Chem. 2002, 373, 266–276.

    Article  Google Scholar 

  44. [44]

    Maiti, N. C.; Apetri, M. M.; Zagorski, M. G.; Carey, P. R.; Anderson, V. E. Raman spectroscopic characterization of secondary structure in natively unfolded proteins: α-synuclein. J. Am. Chem. Soc. 2004, 126, 2399–2408.

    Article  Google Scholar 

  45. [45]

    Jain, R.; Agarwal, A.; Kierski, P. R.; Schurr, M. J.; Murphy, C. J.; McAnulty, J. F.; Abbott, N. L. The use of native chemical functional groups presented by wound beds for the covalent attachment of polymeric microcarriers of bioactive factors. Biomaterials 2013, 34, 340–352.

    Article  Google Scholar 

  46. [46]

    Schagger, H. Tricine-SDS-PAGE. Nat. Protoc. 2006, 1, 16–22.

    Article  Google Scholar 

  47. [47]

    Chirgadze, Y. N.; Nevskaya, N. A. Infrared spectra and resonance interaction of amide-i vibration of the antiparallel-chain pleated sheet. Biopolymers 1976, 15, 607–625.

    Article  Google Scholar 

  48. [48]

    Sarroukh, R.; Goormaghtigh, E.; Ruysschaert, J. M.; Raussens, V. ATR-FTIR: A “rejuvenated” tool to investigate amyloid proteins. Biochim. Biophys. Acta 2013, 1828, 2328–2338.

    Article  Google Scholar 

  49. [49]

    Hwang, W.; Zhang, S.; Kamm, R. D.; Karplus, M. Kinetic control of dimer structure formation in amyloid fibrillogenesis. Proc. Natl. Acad. Sci. USA 2004, 101, 12916–12921.

    Article  Google Scholar 

  50. [50]

    Saracino, G. A. A.; Gelain, F. Modelling and analysis of early aggregation events of bmhp1-derived self-assembling peptides. J. Biomol. Struct. Dyn. 2014, 32, 759–775.

    Article  Google Scholar 

  51. [51]

    Sunde, M.; Serpell, L. C.; Bartlam, M.; Fraser, P. E.; Pepys, M. B.; Blake, C. C. F. Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J. Mol. Biol. 1997, 273, 729–739.

    Article  Google Scholar 

  52. [52]

    Yokoi, H.; Kinoshita, T.; Zhang, S. Dynamic reassembly of peptide rada16 nanofiber scaffold. Proc. Natl. Acad. Sci. USA 2005, 102, 8414–8419.

    Article  Google Scholar 

  53. [53]

    Haynie, D. T. Physics of polypeptide multilayer films. J. Biomed. Mater. Res. B: Appl. Biomater. 2006, 78B, 243–252.

    Article  Google Scholar 

  54. [54]

    Mermut, O.; Phillips, D. C.; York, R. L.; McCrea, K. R.; Ward, R. S.; Somorjai, G. A. In situ adsorption studies of a 14-amino acid leucine-lysine peptide onto hydrophobic polystyrene and hydrophilic silica surfaces using quartz crystal microbalance, atomic force microscopy, and sum frequency generation vibrational spectroscopy. J. Am. Chem. Soc. 2006, 128, 3598–3607.

    Article  Google Scholar 

  55. [55]

    Hermanson, G. T. Bioconjugate Techniques; 3rd ed. Elsevier: Amsterdam, 2013.

    Google Scholar 

  56. [56]

    Demir, B.; Walsh, T. R. A robust and reproducible procedure for cross-linking thermoset polymers using molecular simulation. Soft Matter 2016, 12, 2453–2464.

    Article  Google Scholar 

  57. [57]

    Buehler, M. J. Nanomechanics of collagen fibrils under varying cross-link densities: Atomistic and continuum studies. J. Mech. Behav. Biomed. Mater. 2008, 1, 59–67.

    Article  Google Scholar 

  58. [58]

    Zhang, S. T.; Fox, D. M.; Urbanc, B. Insights into formation and structure of aβ oligomers cross-linked via tyrosines. J. Phys. Chem. B 2017, 121, 5523–5535.

    Article  Google Scholar 

  59. [59]

    Gelain, F.; Bottai, D.; Vescovi, A.; Zhang, S. G. Designer self-assembling peptide nanofiber scaffolds for adult mouse neural stem cell 3-dimensional cultures. PLoS One 2006, 1, e119.

    Article  Google Scholar 

  60. [60]

    Lee, J. H.; Jung, H. W.; Kang, I. K.; Lee, H. B. Cell behaviour on polymer surfaces with different functional groups. Biomaterials 1994, 15, 705–711.

    Article  Google Scholar 

  61. [61]

    Cai, L.; Lu, J.; Sheen, V.; Wang, S. F. Optimal poly(L-lysine) grafting density in hydrogels for promoting neural progenitor cell functions. Biomacromolecules 2012, 13, 1663–1674.

    Article  Google Scholar 

  62. [62]

    Tayi, A. S.; Pashuck, E. T.; Newcomb, C. J.; McClendon, M. T.; Stupp, S. I. Electrospinning bioactive supramolecular polymers from water. Biomacromolecules 2014, 15, 1323–1327.

    Article  Google Scholar 

  63. [63]

    Singh, G.; Bittner, A. M.; Loscher, S.; Malinowski, N.; Kern, K. Electrospinning of diphenylalanine nanotubes. Adv. Mater. 2008, 20, 2332–2336.

    Article  Google Scholar 

Download references

Acknowledgements

Work described and performed by R. P., G. S., and F. G. was funded by Fondazione Cariplo under Grant no. 2011-0352, by La Colonna Onlus, by the “Ricerca Corrente 2015–2016” funding granted by the Italian Ministry of Health and by the “5 × 1000” voluntary contributions. A. M. is supported by a fellowship granted by Vertical Onlus. Raman, XRD, FTIR and WAXS experiments were conducted at the Advanced Light Source and at the Molecular Foundry, at the Lawrence Berkeley National Laboratory, both of which are supported by the Office of Science, under Contract No. DE-AC02-05CH11231. We thank Alice Nodari for her help in SAP production and QC tests.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Gelain.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pugliese, R., Marchini, A., Saracino, G.A.A. et al. Cross-linked self-assembling peptide scaffolds. Nano Res. 11, 586–602 (2018). https://doi.org/10.1007/s12274-017-1834-6

Download citation

Keywords

  • self-assembling peptide
  • co-assembling peptide
  • cross-linking
  • sulfo-SMCC
  • supramolecular self-assembly