Oxygen-assisted preparation of mechanoluminescent ZnS:Mn for dynamic pressure mapping


Mechanoluminescent materials that convert mechanical stimuli to light emission have attracted extensive attention for potential applications in human-machine interactions. Here, we report a simple and available novel approach for the oxygen-assisted preparation of ZnS:Mn particles by solid-state reaction at atmospheric pressure without the formation of the corresponding oxides. The existence of O2 has a positive impact on the formation of S vacancies in wurtzite-phase ZnS, leading to the introduction of Mn2+ ion luminescent centers and shallow donor levels, which can improve the electron-hole recombination rate. The O2 ratio and Mn2+ ion doping concentration have significant effects on the luminous efficiency, which is optimal at 1%–20% and 1 at.%–2 at.% respectively. In addition, a device based on the piezo-photonic effect with excellent pressure sensitivity of 0.032 MPa−1 was fabricated, which can map the two-dimensional pressure distribution ranging from 2.2 to 40.6 MPa in situ. This device can be applied to real-time pressure mapping, smart sensor networks, high-level security systems, human-machine interfaces, and artificial skins.

This is a preview of subscription content, access via your institution.


  1. [1]

    Camara, C. G.; Escobar, J. V.; Hird, J. R.; Putterman, S. J. Correlation between nanosecond X-ray flashes and stick-slip friction in peeling tape. Nature 2008, 455, 1089–1092.

    Article  Google Scholar 

  2. [2]

    Eddingsaas, N. C.; Suslick, K. S. Mechanoluminescence: Light from sonication of crystal slurries. Nature 2006, 444, 163.

    Article  Google Scholar 

  3. [3]

    Jeong, S. M.; Song, S.; Lee, S. K.; Ha, N. Y. Color manipulation of mechanoluminescence from stress-activated composite films. Adv. Mater. 2013, 25, 6194–6200.

    Article  Google Scholar 

  4. [4]

    Jeong, S. M.; Song, S.; Kim, H. Simultaneous dual-channel blue/green emission from electro-mechanically powered elastomeric zinc sulphide composite. Nano Energy 2016, 21, 154–161.

    Article  Google Scholar 

  5. [5]

    Jeong, S. M.; Song, S.; Lee, S. K.; Choi, B. Mechanically driven light-generator with high durability. Appl. Phys. Lett. 2013, 102, 051110.

    Article  Google Scholar 

  6. [6]

    Li, F.; Wang, X. D.; Xia, Z. G.; Pan, C. F.; Liu, Q. L. Photoluminescence tuning in stretchable pdms film grafted doped core/multishell quantum dots for anticounterfeiting. Adv. Funct. Mater. 2017, 27, 1700051.

    Article  Google Scholar 

  7. [7]

    Wang, X. D.; Que, M. L.; Chen, M. X.; Han, X.; Li, X. Y.; Pan, C. F.; Wang, Z. L. Full dynamic-range pressure sensor matrix based on optical and electrical dual-mode sensing. Adv. Mater. 2017, 29, 1605817.

    Article  Google Scholar 

  8. [8]

    Wang, X. D.; Zhang, H. L.; Yu, R. M.; Dong, L.; Peng, D. F.; Zhang, A. H.; Zhang, Y.; Liu, H.; Pan, C. F.; Wang, Z. L. Dynamic pressure mapping of personalized handwriting by a flexible sensor matrix based on the mechanoluminescence process. Adv. Mater. 2015, 27, 2324–2331.

    Article  Google Scholar 

  9. [9]

    Wang, X. D.; Dong, L.; Zhang, H. L.; Yu, R. M.; Pan, C. F.; Wang, Z. L. Recent progress in electronic skin. Adv. Sci. 2015, 2, 1500169.

    Article  Google Scholar 

  10. [10]

    Chandra, B. P.; Xu, C. N.; Yamada, H.; Zheng, X. G. Luminescence induced by elastic deformation of ZnS:Mn nanoparticles. J. Lumin. 2010, 130, 442–450.

    Article  Google Scholar 

  11. [11]

    Peng, D. F.; Chen, B.; Wang, F. Recent advances in doped mechanoluminescent phosphors. ChemPlusChem 2015, 80, 1209–1215.

    Article  Google Scholar 

  12. [12]

    Tu, D.; Xu, C. N.; Yoshida, A.; Fujihala, M.; Hirotsu, J.; Zheng, X. G. LiNbO3:Pr3+: A multipiezo material with simultaneous piezoelectricity and sensitive piezoluminescence. Adv. Mater. 2017, 29, 1606914.

    Article  Google Scholar 

  13. [13]

    Wang, X.; Xu, C. N.; Yamada, H.; Nishikubo, K.; Zheng, X. G. Electro-mechano-optical conversions in Pr3+-doped BaTiO3-CaTiO3 ceramics. Adv. Mater. 2005, 17, 1254–1258.

    Article  Google Scholar 

  14. [14]

    Cho, S.; Kang, S.; Pandya, A.; Shanker, R.; Khan, Z.; Lee, Y.; Park, J.; Craig, S. L.; Ko, H. Large-area cross-aligned silver nanowire electrodes for flexible, transparent, and force-sensitive mechanochromic touch screens. Acs Nano 2017, 11, 4346–4357.

    Article  Google Scholar 

  15. [15]

    Kim, G.; Cho, S.; Chang, K.; Kim, W. S.; Kang, H.; Ryu, S. P.; Myoung, J.; Park, J.; Park, C.; Shim, W. Spatially pressure-mapped thermochromic interactive sensor. Adv. Mater. 2017, 29, 1606120.

    Article  Google Scholar 

  16. [16]

    Hirai, Y.; Nakanishi, T.; Kitagawa, Y.; Fushimi, K.; Seki, T.; Ito, H.; Hasegawa, Y. Triboluminescence of lanthanide coordination polymers with face-to-face arranged substituents. Angew. Chem. 2017, 129, 7277–7281.

    Article  Google Scholar 

  17. [17]

    Gan, J. Y.; Kang, M. G.; Meeker, M. A.; Khodaparast, G. A.; Bodnar, R. J.; Mahaney, J. E.; Maurya, D.; Priya, S. Enhanced piezoluminescence in non-stoichiometric Zns:Cu microparticles based light emitting elastomers. J. Mater. Chem. C 2017, 5, 5387–5394.

    Article  Google Scholar 

  18. [18]

    Li, L. J.; Wong, K. L.; Li, P. F.; Peng, M. Y. Mechanoluminescence properties of Mn2+-doped BaZnOS phosphor. J. Mater. Chem. C 2016, 4, 8166–8170.

    Article  Google Scholar 

  19. [19]

    Yang, Y. B.; Yang, X. D.; Tan, Y. N.; Yuan, Q. Recent progress in flexible and wearable bio-electronics based on nanomaterials. Nano Res. 2017, 10, 1560–1583.

    Article  Google Scholar 

  20. [20]

    Xu, C. N.; Watanabe, T.; Akiyama, M.; Zheng, X. G. Direct view of stress distribution in solid by mechanoluminescence. Appl. Phys. Lett. 1999, 74, 2414–2416.

    Article  Google Scholar 

  21. [21]

    Fang, H. J.; Wang, X. D.; Li, Q.; Peng, D. F.; Yan, Q. F.; Pan, C. F. A stretchable nanogenerator with electric/light dual-mode energy conversion. Adv. Energy Mater. 2016, 6, 1600829.

    Article  Google Scholar 

  22. [22]

    Xu, C. N.; Yamada, H.; Wang, X. S.; Zheng, X. G. Strong elasticoluminescence from monoclinic-structure SrAl2O4. Appl. Phys. Lett. 2004, 84, 3040–3042.

    Article  Google Scholar 

  23. [23]

    Wang, Z. L. Towards self-powered nanosystems: From nanogenerators to nanopiezotronics. Adv. Funct. Mater. 2008, 18, 3553–3567.

    Article  Google Scholar 

  24. [24]

    Wang, Z. L. Piezopotential gated nanowire devices: Piezotronics and piezo-phototronics. Nano Today 2010, 5, 540–552.

    Article  Google Scholar 

  25. [25]

    Yu, R. M.; Dong, L.; Pan, C. F.; Niu, S. M.; Liu, H. F.; Liu, W.; Chua, S.; Chi, D. Z.; Wang, Z. L. Piezotronic effect on the transport properties of GaN nanobelts for active flexible electronics. Adv. Mater. 2012, 24, 3532–3537.

    Article  Google Scholar 

  26. [26]

    Pan, C. F.; Dong, L.; Zhu, G.; Niu, S. M.; Yu, R. M.; Yang, Q.; Liu, Y.; Wang, Z. L. High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array. Nat. Photonics 2013, 7, 752–758.

    Article  Google Scholar 

  27. [27]

    Wu, W. Z.; Wen, X. N.; Wang, Z. L. Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging. Science 2013, 340, 952–957.

    Article  Google Scholar 

  28. [28]

    Chen, L.; Wong, M. C.; Bai, G. X.; Jie, W. J.; Hao, J. H. White and green light emissions of flexible polymer composites under electric field and multiple strains. Nano Energy 2015, 14, 372–381.

    Article  Google Scholar 

  29. [29]

    Huang, L. B.; Xu, W.; Bai, G. X.; Wong, M. C.; Yang, Z. B.; Hao, J. H. Wind energy and blue energy harvesting based on magnetic-assisted noncontact triboelectric nanogenerator. Nano Energy 2016, 30, 36–42.

    Article  Google Scholar 

  30. [30]

    Hu, G. F.; Guo, W. X.; Yu, R. M.; Yang, X. N.; Zhou, R. R.; Pan, C. F.; Wang, Z. L. Enhanced performances of flexible zno/perovskite solar cells by piezo-phototronic effect. Nano Energy 2016, 23, 27–33.

    Article  Google Scholar 

  31. [31]

    Wang, C. F.; Bao, R. R.; Zhao, K.; Zhang, T. P.; Dong, L.; Pan, C. F. Enhanced emission intensity of vertical aligned flexible ZnO nanowire/p-polymer hybridized led array by piezo-phototronic effect. Nano Energy 2015, 14, 364–371.

    Article  Google Scholar 

  32. [32]

    Wen, X. N.; Wu, W. Z.; Pan, C. F.; Hu, Y. F.; Yang, Q.; Wang, Z. L. Development and progress in piezotronics. Nano Energy 2015, 14, 276–295.

    Article  Google Scholar 

  33. [33]

    Hu, G. F.; Zhou, R. R.; Yu, R. M.; Dong, L.; Pan, C. F.; Wang, Z. L. Piezotronic effect enhanced schottky-contact ZnO micro/nanowire humidity sensors. Nano Res. 2014, 7, 1083–1091.

    Article  Google Scholar 

  34. [34]

    Qiu, J. C.; Zhao, K.; Li, L. L.; Yu, X.; Guo, W. B.; Wang, S.; Zhang, X. D.; Pan, C. F.; Wang, Z. L.; Liu, H. A titanium dioxide nanorod array as a high-affinity nano-bio interface of a microfluidic device for efficient capture of circulating tumor cells. Nano Res. 2017, 10, 776–784.

    Article  Google Scholar 

  35. [35]

    Zhang, T. P.; Liang, R. R.; Dong, L.; Wang, J.; Xu, J.; Pan, C. F. Wavelength-tunable infrared light emitting diode based on ordered ZnO nanowire/Si1−xGex alloy heterojunction. Nano Res. 2015, 8, 2676–2685.

    Article  Google Scholar 

  36. [36]

    Wang, X. D.; Zhang, H. L.; Dong, L.; Han, X.; Du, W. M.; Zhai, J. Y.; Pan, C. F.; Wang, Z. L. Self-powered high-resolution and pressure-sensitive triboelectric sensor matrix for real-time tactile mapping. Adv. Mater. 2016, 28, 2896–2903.

    Article  Google Scholar 

  37. [37]

    Xu, C. N.; Watanabe, T.; Akiyama, M.; Zheng, X. G. Artificial skin to sense mechanical stress by visible light emission. Appl. Phys. Lett. 1999, 74, 1236–1238.

    Article  Google Scholar 

  38. [38]

    Kollman, P. Free energy calculations: Applications to chemical and biochemical phenomena. Chem. Rev. 1993, 93, 2395–2417.

    Article  Google Scholar 

  39. [39]

    Chen, Y.; Zhang, Y.; Karnaushenko, D.; Chen, L.; Hao, J. H.; Ding, F.; Schmidt, O. G. Addressable and color-tunable piezophotonic light-emitting stripes. Adv. Mater. 2017, 29, 1605165.

    Article  Google Scholar 

  40. [40]

    Wong, M. C.; Chen, L.; Tsang, M. K.; Zhang, Y.; Hao, J. H. Magnetic-induced luminescence from flexible composite laminates by coupling magnetic field to piezophotonic effect. Adv. Mater. 2015, 27, 4488–4495.

    Article  Google Scholar 

  41. [41]

    Zhang, Y.; Gao, G. Y.; Chan, H. L. W.; Dai, J. Y.; Wang, Y.; Hao, J. H. Piezo-phototronic effect-induced dual-mode light and ultrasound emissions from ZnS:Mn/PMN-Pt thin-film structures. Adv. Mater. 2012, 24, 1729–1735.

    Article  Google Scholar 

Download references


The authors are thankful for support from National Natural Science Foundation of China (Nos. 51622205, 61675027, 61405040, 51432005, 61505010, and 51502018), National Key R & D project from Minister of Science and Technology, China (No. 2016YFA0202703), National Postdoctoral Program for Innovative Talents (No. BX201600040), China Postdoctoral Science Foundation Funded Project (No. 2016M600976) and the “Thousand Talents” program of China for pioneering researchers and innovative teams.

Author information



Corresponding author

Correspondence to Caofeng Pan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Ling, R., Zhang, Y. et al. Oxygen-assisted preparation of mechanoluminescent ZnS:Mn for dynamic pressure mapping. Nano Res. 11, 1967–1976 (2018). https://doi.org/10.1007/s12274-017-1813-y

Download citation


  • oxygen assistance
  • piezo-photonic effect
  • pressure mapping
  • ZnS:Mn