Nano Research

, Volume 11, Issue 4, pp 1967–1976 | Cite as

Oxygen-assisted preparation of mechanoluminescent ZnS:Mn for dynamic pressure mapping

  • Xiandi Wang
  • Rui Ling
  • Yufei Zhang
  • Miaoling Que
  • Yiyao Peng
  • Caofeng Pan
Research Article


Mechanoluminescent materials that convert mechanical stimuli to light emission have attracted extensive attention for potential applications in human-machine interactions. Here, we report a simple and available novel approach for the oxygen-assisted preparation of ZnS:Mn particles by solid-state reaction at atmospheric pressure without the formation of the corresponding oxides. The existence of O2 has a positive impact on the formation of S vacancies in wurtzite-phase ZnS, leading to the introduction of Mn2+ ion luminescent centers and shallow donor levels, which can improve the electron-hole recombination rate. The O2 ratio and Mn2+ ion doping concentration have significant effects on the luminous efficiency, which is optimal at 1%–20% and 1 at.%–2 at.% respectively. In addition, a device based on the piezo-photonic effect with excellent pressure sensitivity of 0.032 MPa−1 was fabricated, which can map the two-dimensional pressure distribution ranging from 2.2 to 40.6 MPa in situ. This device can be applied to real-time pressure mapping, smart sensor networks, high-level security systems, human-machine interfaces, and artificial skins.


oxygen assistance piezo-photonic effect pressure mapping ZnS:Mn 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors are thankful for support from National Natural Science Foundation of China (Nos. 51622205, 61675027, 61405040, 51432005, 61505010, and 51502018), National Key R & D project from Minister of Science and Technology, China (No. 2016YFA0202703), National Postdoctoral Program for Innovative Talents (No. BX201600040), China Postdoctoral Science Foundation Funded Project (No. 2016M600976) and the “Thousand Talents” program of China for pioneering researchers and innovative teams.


  1. [1]
    Camara, C. G.; Escobar, J. V.; Hird, J. R.; Putterman, S. J. Correlation between nanosecond X-ray flashes and stick-slip friction in peeling tape. Nature 2008, 455, 1089–1092.CrossRefGoogle Scholar
  2. [2]
    Eddingsaas, N. C.; Suslick, K. S. Mechanoluminescence: Light from sonication of crystal slurries. Nature 2006, 444, 163.CrossRefGoogle Scholar
  3. [3]
    Jeong, S. M.; Song, S.; Lee, S. K.; Ha, N. Y. Color manipulation of mechanoluminescence from stress-activated composite films. Adv. Mater. 2013, 25, 6194–6200.CrossRefGoogle Scholar
  4. [4]
    Jeong, S. M.; Song, S.; Kim, H. Simultaneous dual-channel blue/green emission from electro-mechanically powered elastomeric zinc sulphide composite. Nano Energy 2016, 21, 154–161.CrossRefGoogle Scholar
  5. [5]
    Jeong, S. M.; Song, S.; Lee, S. K.; Choi, B. Mechanically driven light-generator with high durability. Appl. Phys. Lett. 2013, 102, 051110.CrossRefGoogle Scholar
  6. [6]
    Li, F.; Wang, X. D.; Xia, Z. G.; Pan, C. F.; Liu, Q. L. Photoluminescence tuning in stretchable pdms film grafted doped core/multishell quantum dots for anticounterfeiting. Adv. Funct. Mater. 2017, 27, 1700051.CrossRefGoogle Scholar
  7. [7]
    Wang, X. D.; Que, M. L.; Chen, M. X.; Han, X.; Li, X. Y.; Pan, C. F.; Wang, Z. L. Full dynamic-range pressure sensor matrix based on optical and electrical dual-mode sensing. Adv. Mater. 2017, 29, 1605817.CrossRefGoogle Scholar
  8. [8]
    Wang, X. D.; Zhang, H. L.; Yu, R. M.; Dong, L.; Peng, D. F.; Zhang, A. H.; Zhang, Y.; Liu, H.; Pan, C. F.; Wang, Z. L. Dynamic pressure mapping of personalized handwriting by a flexible sensor matrix based on the mechanoluminescence process. Adv. Mater. 2015, 27, 2324–2331.CrossRefGoogle Scholar
  9. [9]
    Wang, X. D.; Dong, L.; Zhang, H. L.; Yu, R. M.; Pan, C. F.; Wang, Z. L. Recent progress in electronic skin. Adv. Sci. 2015, 2, 1500169.CrossRefGoogle Scholar
  10. [10]
    Chandra, B. P.; Xu, C. N.; Yamada, H.; Zheng, X. G. Luminescence induced by elastic deformation of ZnS:Mn nanoparticles. J. Lumin. 2010, 130, 442–450.CrossRefGoogle Scholar
  11. [11]
    Peng, D. F.; Chen, B.; Wang, F. Recent advances in doped mechanoluminescent phosphors. ChemPlusChem 2015, 80, 1209–1215.CrossRefGoogle Scholar
  12. [12]
    Tu, D.; Xu, C. N.; Yoshida, A.; Fujihala, M.; Hirotsu, J.; Zheng, X. G. LiNbO3:Pr3+: A multipiezo material with simultaneous piezoelectricity and sensitive piezoluminescence. Adv. Mater. 2017, 29, 1606914.CrossRefGoogle Scholar
  13. [13]
    Wang, X.; Xu, C. N.; Yamada, H.; Nishikubo, K.; Zheng, X. G. Electro-mechano-optical conversions in Pr3+-doped BaTiO3-CaTiO3 ceramics. Adv. Mater. 2005, 17, 1254–1258.CrossRefGoogle Scholar
  14. [14]
    Cho, S.; Kang, S.; Pandya, A.; Shanker, R.; Khan, Z.; Lee, Y.; Park, J.; Craig, S. L.; Ko, H. Large-area cross-aligned silver nanowire electrodes for flexible, transparent, and force-sensitive mechanochromic touch screens. Acs Nano 2017, 11, 4346–4357.CrossRefGoogle Scholar
  15. [15]
    Kim, G.; Cho, S.; Chang, K.; Kim, W. S.; Kang, H.; Ryu, S. P.; Myoung, J.; Park, J.; Park, C.; Shim, W. Spatially pressure-mapped thermochromic interactive sensor. Adv. Mater. 2017, 29, 1606120.CrossRefGoogle Scholar
  16. [16]
    Hirai, Y.; Nakanishi, T.; Kitagawa, Y.; Fushimi, K.; Seki, T.; Ito, H.; Hasegawa, Y. Triboluminescence of lanthanide coordination polymers with face-to-face arranged substituents. Angew. Chem. 2017, 129, 7277–7281.CrossRefGoogle Scholar
  17. [17]
    Gan, J. Y.; Kang, M. G.; Meeker, M. A.; Khodaparast, G. A.; Bodnar, R. J.; Mahaney, J. E.; Maurya, D.; Priya, S. Enhanced piezoluminescence in non-stoichiometric Zns:Cu microparticles based light emitting elastomers. J. Mater. Chem. C 2017, 5, 5387–5394.CrossRefGoogle Scholar
  18. [18]
    Li, L. J.; Wong, K. L.; Li, P. F.; Peng, M. Y. Mechanoluminescence properties of Mn2+-doped BaZnOS phosphor. J. Mater. Chem. C 2016, 4, 8166–8170.CrossRefGoogle Scholar
  19. [19]
    Yang, Y. B.; Yang, X. D.; Tan, Y. N.; Yuan, Q. Recent progress in flexible and wearable bio-electronics based on nanomaterials. Nano Res. 2017, 10, 1560–1583.CrossRefGoogle Scholar
  20. [20]
    Xu, C. N.; Watanabe, T.; Akiyama, M.; Zheng, X. G. Direct view of stress distribution in solid by mechanoluminescence. Appl. Phys. Lett. 1999, 74, 2414–2416.CrossRefGoogle Scholar
  21. [21]
    Fang, H. J.; Wang, X. D.; Li, Q.; Peng, D. F.; Yan, Q. F.; Pan, C. F. A stretchable nanogenerator with electric/light dual-mode energy conversion. Adv. Energy Mater. 2016, 6, 1600829.CrossRefGoogle Scholar
  22. [22]
    Xu, C. N.; Yamada, H.; Wang, X. S.; Zheng, X. G. Strong elasticoluminescence from monoclinic-structure SrAl2O4. Appl. Phys. Lett. 2004, 84, 3040–3042.CrossRefGoogle Scholar
  23. [23]
    Wang, Z. L. Towards self-powered nanosystems: From nanogenerators to nanopiezotronics. Adv. Funct. Mater. 2008, 18, 3553–3567.CrossRefGoogle Scholar
  24. [24]
    Wang, Z. L. Piezopotential gated nanowire devices: Piezotronics and piezo-phototronics. Nano Today 2010, 5, 540–552.CrossRefGoogle Scholar
  25. [25]
    Yu, R. M.; Dong, L.; Pan, C. F.; Niu, S. M.; Liu, H. F.; Liu, W.; Chua, S.; Chi, D. Z.; Wang, Z. L. Piezotronic effect on the transport properties of GaN nanobelts for active flexible electronics. Adv. Mater. 2012, 24, 3532–3537.CrossRefGoogle Scholar
  26. [26]
    Pan, C. F.; Dong, L.; Zhu, G.; Niu, S. M.; Yu, R. M.; Yang, Q.; Liu, Y.; Wang, Z. L. High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array. Nat. Photonics 2013, 7, 752–758.CrossRefGoogle Scholar
  27. [27]
    Wu, W. Z.; Wen, X. N.; Wang, Z. L. Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging. Science 2013, 340, 952–957.CrossRefGoogle Scholar
  28. [28]
    Chen, L.; Wong, M. C.; Bai, G. X.; Jie, W. J.; Hao, J. H. White and green light emissions of flexible polymer composites under electric field and multiple strains. Nano Energy 2015, 14, 372–381.CrossRefGoogle Scholar
  29. [29]
    Huang, L. B.; Xu, W.; Bai, G. X.; Wong, M. C.; Yang, Z. B.; Hao, J. H. Wind energy and blue energy harvesting based on magnetic-assisted noncontact triboelectric nanogenerator. Nano Energy 2016, 30, 36–42.CrossRefGoogle Scholar
  30. [30]
    Hu, G. F.; Guo, W. X.; Yu, R. M.; Yang, X. N.; Zhou, R. R.; Pan, C. F.; Wang, Z. L. Enhanced performances of flexible zno/perovskite solar cells by piezo-phototronic effect. Nano Energy 2016, 23, 27–33.CrossRefGoogle Scholar
  31. [31]
    Wang, C. F.; Bao, R. R.; Zhao, K.; Zhang, T. P.; Dong, L.; Pan, C. F. Enhanced emission intensity of vertical aligned flexible ZnO nanowire/p-polymer hybridized led array by piezo-phototronic effect. Nano Energy 2015, 14, 364–371.CrossRefGoogle Scholar
  32. [32]
    Wen, X. N.; Wu, W. Z.; Pan, C. F.; Hu, Y. F.; Yang, Q.; Wang, Z. L. Development and progress in piezotronics. Nano Energy 2015, 14, 276–295.CrossRefGoogle Scholar
  33. [33]
    Hu, G. F.; Zhou, R. R.; Yu, R. M.; Dong, L.; Pan, C. F.; Wang, Z. L. Piezotronic effect enhanced schottky-contact ZnO micro/nanowire humidity sensors. Nano Res. 2014, 7, 1083–1091.CrossRefGoogle Scholar
  34. [34]
    Qiu, J. C.; Zhao, K.; Li, L. L.; Yu, X.; Guo, W. B.; Wang, S.; Zhang, X. D.; Pan, C. F.; Wang, Z. L.; Liu, H. A titanium dioxide nanorod array as a high-affinity nano-bio interface of a microfluidic device for efficient capture of circulating tumor cells. Nano Res. 2017, 10, 776–784.CrossRefGoogle Scholar
  35. [35]
    Zhang, T. P.; Liang, R. R.; Dong, L.; Wang, J.; Xu, J.; Pan, C. F. Wavelength-tunable infrared light emitting diode based on ordered ZnO nanowire/Si1−xGex alloy heterojunction. Nano Res. 2015, 8, 2676–2685.CrossRefGoogle Scholar
  36. [36]
    Wang, X. D.; Zhang, H. L.; Dong, L.; Han, X.; Du, W. M.; Zhai, J. Y.; Pan, C. F.; Wang, Z. L. Self-powered high-resolution and pressure-sensitive triboelectric sensor matrix for real-time tactile mapping. Adv. Mater. 2016, 28, 2896–2903.CrossRefGoogle Scholar
  37. [37]
    Xu, C. N.; Watanabe, T.; Akiyama, M.; Zheng, X. G. Artificial skin to sense mechanical stress by visible light emission. Appl. Phys. Lett. 1999, 74, 1236–1238.CrossRefGoogle Scholar
  38. [38]
    Kollman, P. Free energy calculations: Applications to chemical and biochemical phenomena. Chem. Rev. 1993, 93, 2395–2417.CrossRefGoogle Scholar
  39. [39]
    Chen, Y.; Zhang, Y.; Karnaushenko, D.; Chen, L.; Hao, J. H.; Ding, F.; Schmidt, O. G. Addressable and color-tunable piezophotonic light-emitting stripes. Adv. Mater. 2017, 29, 1605165.CrossRefGoogle Scholar
  40. [40]
    Wong, M. C.; Chen, L.; Tsang, M. K.; Zhang, Y.; Hao, J. H. Magnetic-induced luminescence from flexible composite laminates by coupling magnetic field to piezophotonic effect. Adv. Mater. 2015, 27, 4488–4495.CrossRefGoogle Scholar
  41. [41]
    Zhang, Y.; Gao, G. Y.; Chan, H. L. W.; Dai, J. Y.; Wang, Y.; Hao, J. H. Piezo-phototronic effect-induced dual-mode light and ultrasound emissions from ZnS:Mn/PMN-Pt thin-film structures. Adv. Mater. 2012, 24, 1729–1735.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiandi Wang
    • 1
    • 2
  • Rui Ling
    • 1
    • 3
  • Yufei Zhang
    • 1
    • 4
  • Miaoling Que
    • 1
    • 2
  • Yiyao Peng
    • 1
    • 2
  • Caofeng Pan
    • 1
    • 2
  1. 1.Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijingChina
  2. 2.CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology (NCNST)BeijingChina
  3. 3.School of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijingChina
  4. 4.Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and EngineeringBeihang UniversityBeijingChina

Personalised recommendations