Skip to main content
Log in

Graphene oxide as a water transporter promoting germination of plants in soil

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Graphene oxide (GO) is a graphene derivative bearing various oxygen-containing functional groups attached to the basal plane and to the edges of the graphene lattice and hence has a unique structure in which numerous hydrophobic sp2 clusters are isolated within the hydrophilic sp3 C–O matrix. In this study, the hydrophilic nature and water-transporting properties of GO were exploited to promote germination and growth of plants. It was found that a low dose of GO significantly promoted the germination of spinach and chive in soil. The oxygen-containing functional groups of GO collected water, and the hydrophobic sp2 domains transported water to the seeds to accelerate the germination of plants. The strong interaction between GO and the surfaces of soil grains stabilized GO in the soil and prevented dissipation of GO. In addition, no GO was detected either on the surface or inside the cells of plants; this finding confirmed that GO was not phytotoxic. Therefore, GO may serve as a promising nontoxic additive to increase a plant yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wu, Z. S.; Zhou, G. M.; Yin, L. C.; Ren, W. C.; Li, F.; Cheng, H. M. Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 2012, 1, 107–131.

    Article  Google Scholar 

  2. Chen, Z. H.; Lin, Y. M.; Rooks, M. J.; Avouris, P. Graphene nano-ribbon electronics. Phys. E: Low-dimens. Syst. Nanostruct. 2007, 40, 228–232.

    Article  Google Scholar 

  3. Valentini, F.; Carbone, M.; Palleschi, G. Carbon nanostructured materials for applications in nano-medicine, cultural heritage, and electrochemical biosensors. Anal. Bioanal. Chem. 2013, 405, 451–465.

    Article  Google Scholar 

  4. Guz, A. N.; Rushchitskii, Y. Y. Nanomaterials: On the mechanics of nanomaterials. Int. Appl. Mech. 2003, 39, 1271–1293.

    Article  Google Scholar 

  5. Kole, C.; Kumar, D. S.; Khodakovskaya, M. V. Plant Nanotechnology: Principles and Practices; Springer: Switzerland, 2016.

    Book  Google Scholar 

  6. El-Temsah, Y. S.; Joner, E. J. Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ. Toxicol. 2012, 27, 42–49.

    Article  Google Scholar 

  7. Barrena, R.; Casals, E.; Colón, J.; Font, X.; Sánchez, A.; Puntes, V. Evaluation of the ecotoxicity of model nanoparticles. Chemosphere 2009, 75, 850–857.

    Article  Google Scholar 

  8. Stampoulis, D.; Sinha, S. K.; White, J. C. Assay-dependent phytotoxicity of nanoparticles to plants. Environ. Sci. Technol. 2009, 43, 9473–9479.

    Article  Google Scholar 

  9. Arora, S.; Sharma, P.; Kumar, S.; Nayan, R.; Khanna, P. K.; Zaidi, M. G. H. Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul. 2012, 66, 303–310.

    Article  Google Scholar 

  10. Zheng, L.; Hong, F. S.; Lu, S. P.; Liu, C. Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol. Trace. Elem. Res. 2005, 104, 83–92.

    Article  Google Scholar 

  11. Khodakovskaya, M.; Dervishi, E.; Mahmood, M.; Xu, Y.; Li, Z. R.; Watanabe, F.; Biris, A. S. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 2009, 3, 3221–3227.

    Article  Google Scholar 

  12. Khodakovskaya, M. V.; de Silva, K.; Nedosekin, D. A.; Dervishi, E.; Biris, A. S.; Shashkov, E. V.; Galanzha, E. I.; Zharov, V. P. Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proc. Natl. Acad. Sci. USA 2011, 108, 1028–1033.

    Article  Google Scholar 

  13. Lahiani, M. H.; Dervishi, E.; Chen, J. H.; Nima, Z.; Gaume, A.; Biris, A. S.; Khodakovskaya, M. V. Impact of carbon nanotube exposure to seeds of valuable crops. ACS Appl. Mater. Interfaces 2013, 5, 7965–7973.

    Article  Google Scholar 

  14. Khodakovskaya, M. V.; Kim, B. S.; Kim, J. N.; Alimohammadi, M.; Dervishi, E.; Mustafa, T.; Cernigla, C. E. Carbon nanotubes as plant growth regulators: Effects on tomato growth, reproductive system, and soil microbial community. Small 2013, 9, 115–123.

    Article  Google Scholar 

  15. Taylor, A. F.; Rylott, E. L.; Anderson, C. W. N.; Bruce, N. C. Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold. PLoS One 2014, 9, e93793.

    Article  Google Scholar 

  16. Gardea-Torresdey, J. L.; Gomez, E.; Peralta-Videa, J. R.; Parsons, J. G.; Troiani, H.; Jose-Yacaman, M. Alfalfa sprouts: A natural source for the synthesis of silver nanoparticles. Langmuir 2003, 19, 1357–1361.

    Article  Google Scholar 

  17. Bandyopadhyay, S.; Plascencia-Villa, G.; Mukherjee, A.; Rico, C. M.; José-Yacamán, M.; Peralta-Videa, J. R.; Gardea-Torresdey, J. L. Comparative phytotoxicity of ZnO NPs, bulk ZnO, and ionic zinc onto the alfalfa plants symbiotically associated with Sinorhizobium meliloti in soil. Sci. Total Environ. 2015, 515–516, 60–69.

    Article  Google Scholar 

  18. Zhao, L. J.; Peralta-Videa, J. R.; Varela-Ramirez, A.; Castillo-Michel, H.; Li, C. Q.; Zhang, J. Y.; Aguilera, R. J.; Keller, A. A.; Gardea-Torresdey, J. L. Effect of surface coating and organic matter on the uptake of CeO2 NPs by corn plants grown in soil: Insight into the uptake mechanism. J. Hazard. Mater. 2012, 225–226, 131–138.

    Article  Google Scholar 

  19. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  Google Scholar 

  20. Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39, 228–240.

    Article  Google Scholar 

  21. Saltzgaber, G.; Wojcik, P.; Sharf, T.; Leyden, M. R.; Wardini, J. L.; Heist, C. A.; Adenuga, A. A.; Remcho, V. T.; Minot, E. D. Scalable graphene field-effect sensors for specific protein detection. Nanotechnol. 2013, 24, 355502.

    Article  Google Scholar 

  22. Novoselov, K. S.; Fal, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200.

    Article  Google Scholar 

  23. Perreault, F.; De Faria, A. F.; Elimelech, M. Environmental applications of graphene-based nanomaterials. Chem. Soc. Rev. 2015, 44, 5861–5896.

    Article  Google Scholar 

  24. Hu, X. G.; Kang, J.; Lu, K. C.; Zhou, R. R.; Mu, L.; Zhou, Q. X. Graphene oxide amplifies the phytotoxicity of arsenic in wheat. Sci. Rep. 2014, 4, 6122.

    Article  Google Scholar 

  25. Begum, P.; Ikhtiari, R.; Fugetsu, B. Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce. Carbon 2011, 49, 3907–3919.

    Article  Google Scholar 

  26. Jiao, J. Z.; Yuan, C. F.; Wang, J.; Xia, Z. L.; Xie, L. L.; Chen, F.; Li, Z. Y.; Xu, B. B. The role of graphene oxide on tobacco root growth and its preliminary mechanism. J. Nanosci. Nanotechnol. 2016, 16, 12449–12454.

    Article  Google Scholar 

  27. Huang, H. B.; Song, Z. G.; Wei, N.; Shi, L.; Mao, Y. Y.; Ying, Y. L.; Sun, L. W.; Xu, Z. P.; Peng, X. S. Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes. Nat. Commun. 2013, 4, 2979.

    Google Scholar 

  28. Hu, M.; Mi, B. X. Enabling graphene oxide nanosheets as water separation membranes. Environ. Sci. Technol. 2013, 47, 3715–3723.

    Article  Google Scholar 

  29. Sun, P. Z.; Liu, H.; Wang, K. L.; Zhong, M. L.; Wu, D. H.; Zhu, H. W. Ultrafast liquid water transport through graphenebased nanochannels measured by isotope labelling. Chem. Commun. 2015, 51, 3251–3254.

    Article  Google Scholar 

  30. Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud’Homme, R. K.; Aksay, I. A.; Car, R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 2008, 8, 36–41.

    Article  Google Scholar 

  31. Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

    Article  Google Scholar 

  32. Hu, W. B.; Peng, C.; Lv, M.; Li, X. M.; Zhang, Y. J.; Chen, N.; Fan, C. H.; Huang, Q. Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS Nano 2011, 5, 3693–3700.

    Article  Google Scholar 

  33. Wills, R. B.; Wong, A. W. K.; Scriven, F. M.; Greenfield, H. Nutrient composition of Chinese vegetables. J. Agric. Food Chem. 1984, 32, 413–416.

    Article  Google Scholar 

  34. Villagarcia, H.; Dervishi, E.; de Silva, K.; Biris, A. S.; Khodakovskaya, M. V. Surface chemistry of carbon nanotubes impacts the growth and expression of water channel protein in tomato plants. Small 2012, 8, 2328–2334.

    Article  Google Scholar 

  35. Asli, S.; Neumann, P. M. Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ. 2009, 32, 577–584.

    Article  Google Scholar 

  36. Zhu, H.; Han, J.; Xiao, J. Q.; Jin, Y. Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J. Environ. Monit. 2008, 10, 713–717.

    Article  Google Scholar 

  37. Lin, D. H.; Xing, B. S. Root uptake and phytotoxicity of ZnO nanoparticles. Environ. Sci. Technol. 2008, 42, 5580–5585.

    Article  Google Scholar 

  38. Zhang, Z. Y.; He, X.; Zhang, H. F.; Ma, Y. H.; Zhang, P.; Ding, Y. Y.; Zhao, Y. L. Uptake and distribution of ceria nanoparticles in cucumber plants. Metallomics 2011, 3, 816–822.

    Article  Google Scholar 

  39. Zhao, G. X.; Li, J. X.; Ren, X. M.; Chen, C. L.; Wang, X. K. Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environ. Sci. Technol. 2011, 45, 10454–10462.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Beijing Natural Science Foundation (No. 2172027), and the National Natural Science Foundation of China (Nos. 51372133 and 51672150).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Zhu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Hu, R., Zhong, Y. et al. Graphene oxide as a water transporter promoting germination of plants in soil. Nano Res. 11, 1928–1937 (2018). https://doi.org/10.1007/s12274-017-1810-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1810-1

Keywords

Navigation