Skip to main content
Log in

One-step synthesis of novel snowflake-like Si-O/Si-C nanostructures on 3D graphene/Cu foam by chemical vapor deposition

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The recent development of synthesis processes for three-dimensional (3D) graphene-based structures has tended to focus on continuous improvement of porous nanostructures, doping modification during thin-film fabrication, and mechanisms for building 3D architectures. Here, we synthesized novel snowflake-like Si-O/Si-C nanostructures on 3D graphene/Cu foam by one-step low-pressure chemical vapor deposition (CVD). Through systematic micromorphological characterization, it was determined that the formation mechanism of the nanostructures involved the melting of the Cu foam surface and the subsequent condensation of the resulting vapor, 3D growth of graphene through catalysis in the presence of Cu, and finally, nucleation of the Si-O/Si-C nanostructure in the carbon-rich atmosphere. Thus, by tuning the growth temperature and duration, it should be possible to control the nucleation and evolution of such snowflake-like nanostructures with precision. Electrochemical measurements indicated that the snowflake-like nanostructures showed excellent performance as a material for energy storage. The highest specific capacitance of the Si-O/Si-C nanostructures was ∼963.2 mF/cm2 at a scan rate of 1 mV/s. Further, even after 20,000 sequential cycles, the electrode retained 94.4% of its capacitance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang, Q.-H. Interface induced 2D or 3D graphene assembly for energy storage. In Abstract: Papers of the Am. Chem. Soc. 2014, 248, 1155.

    Google Scholar 

  2. Fan, X. L.; Chen, X. L.; Dai, L. M. 3D graphene based materials for energy storage. Curr. Opin. Colloid Interface Sci. 2015, 20, 429–438.

    Google Scholar 

  3. Qiu, H.-J.; Liu, L.; Wang, Y. Template-directed fabrication of 3D graphene-based composite and their electrochemical energy-related applications. Sci. Bull. 2016, 61, 443–450.

    Article  Google Scholar 

  4. Ganesh, E. N.; Kumar, V. V.; Huzefa, E. M. Carbon nano tubes—Overview, simulation of single and multilayer CNTs with it’s synthesis and energy storage applications. In Proceedings of 2006 IEEE Conference on Emerging Technologies—Nanoelectronics, Singapore, Singapore, 2006, pp 159–168.

    Chapter  Google Scholar 

  5. Ma, S. B.; Nam, K. W.; Yoon, W. S.; Bak, S. M.; Yang, X. Q.; Cho, B. W.; Kim, K. B. Nano-sized lithium manganese oxide dispersed on carbon nanotubes for energy storage applications. Electrochem. Commun. 2009, 11, 1575–1578.

    Article  Google Scholar 

  6. Ying, Y. H. A new generation 3D printed on-chip energy storage devices. In Proceedings of 2016 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC 2016), Hong Kong, China, 2016, pp 472–475.

    Chapter  Google Scholar 

  7. Xie, Y. Z.; Liu, Y.; Zhao, Y. D.; Tsang, Y. H.; Lau, S. P.; Huang, H. T.; Chai, Y. Stretchable all-solid-state supercapacitor with wavy shaped polyaniline/graphene electrode. J. Mater. Chem. A 2014, 2, 9142–9149.

    Article  Google Scholar 

  8. Zhou, F. C.; Ren, Z. W.; Zhao, Y. D.; Shen, X. P.; Wang, A. W.; Li, Y. Y.; Surya, C.; Chai, Y. Perovskite photovoltachromic supercapacitor with all-transparent electrodes. ACS Nano 2016, 10, 5900–5908.

    Article  Google Scholar 

  9. Rolison, D. R.; Long, J. W.; Lytle, J. C.; Fischer, A. E.; Rhodes, C. P.; McEvoy, T. M.; Bourg, M. E.; Lubers, A. M. Multifunctional 3D nanoarchitectures for energy storage and conversion. Chem. Soc. Rev. 2009, 38, 226–252.

    Article  Google Scholar 

  10. Badi, N.; Bensaoula, A. Nano-engineered dielectrics for energy storage solutions. Nanotech. 2009, 2, 534–537.

    Google Scholar 

  11. Murugan, A. V.; Muraliganth, T.; Ferreira, P. J.; Manthiram, A. Dimensionally modulated, single-crystalline LiMPO4 (M = Mn, Fe, Co, and Ni) with nano-thumblike shapes for high-power energy storage. Inorg. Chem. 2009, 48, 946–952.

    Article  Google Scholar 

  12. Ma, S. B. Metal oxide/carbon nanotubes nano-hybrid materials for energy storage applications. In Abstract: Papers of the Am. Chem. Soc. 2010, 240, 1155.

    Google Scholar 

  13. Lee, J. Y.; Lee, K. H.; Kim, Y. J.; Ha, J. S.; Lee, S. S.; Son, J. G. Sea-urchin-inspired 3D crumpled graphene balls using simultaneous etching and reduction process for high-density capacitive energy storage. Adv. Funct. Mater. 2015, 25, 3606–3614.

    Article  Google Scholar 

  14. Song, R. B.; Jin, H. Y.; Li, X.; Fei, L. F.; Zhao, Y.D.; Huang, H. T.; Chan, H. L. W.; Wang, Y.; Chai, Y. A rectification-free piezo-supercapacitor with a polyvinylidene fluoride separator and functionalized carbon cloth electrodes. J. Mater. Chem. A 2015, 3, 14963–14970.

    Article  Google Scholar 

  15. Hu, Y.; Chen, T.; Wang, X. Q.; Ma, L. B.; Chen, R. P.; Zhu, H. F.; Yuan, X.; Yan, C. Z.; Zhu, G. Y.; Lv, H. L. et al. Controlled growth and photoconductive properties of hexagonal SnS2 nanoflakes with mesa-shaped atomic steps. Nano Res. 2017, 10, 1434–1447.

    Article  Google Scholar 

  16. Lochala, J. A.; Zhang, H. Z.; Wang, Y. S.; Okolo, O.; Li, X. F.; Xiao, J. Practical challenges in employing graphene for lithium-ion batteries and beyond. Small Methods 2017, 1, 1700099.

    Article  Google Scholar 

  17. Xu, J. G.; Zhang, L.; Wang, Y. K.; Chen, T.; Al-Shroofy, M.; Cheng, Y. T. Unveiling the critical role of polymeric binders for silicon negative electrodes in lithium-ion full cells. ACS Appl. Mater. Interfaces 2017, 9, 3562–3569.

    Article  Google Scholar 

  18. Ji, J. Y.; Ji, H. X.; Zhang, L. L.; Zhao, X.; Bai, X.; Fan, X. B.; Zhang, F. B.; Ruoff, R. S. Graphene-encapsulated Si on ultrathin-graphite foam as anode for high capacity lithiumion batteries. Adv. Mater. 2013, 25, 4673–4677.

    Article  Google Scholar 

  19. Gowda, S. R.; Pushparaj, V.; Herle, S.; Girishkumar, G.; Gordon, J. G.; Gullapalli, H.; Zhan, X. B.; Ajayan, P. M.; Reddy, A. L. M. Three-dimensionally engineered porous silicon electrodes for Li ion batteries. Nano Lett. 2012, 12, 6060–6065.

    Article  Google Scholar 

  20. Karki, K.; Epstein, E.; Cho, J. H.; Jia, Z.; Li, T.; Picraux, S. T.; Wang, C. S.; Cumings, J. Lithium-assisted electrochemical welding in silicon nanowire battery electrodes. Nano Lett. 2012, 12, 1392–1397.

    Article  Google Scholar 

  21. Yan, Q.; Wang, Z. L.; Zhang, J.; Peng, H.; Chen, X. J.; Hou, H. N.; Liu, C. R. Nickel hydroxide modified silicon nanowires electrode for hydrogen peroxide sensor applications. Electrochim. Acta 2012, 61, 148–153.

    Article  Google Scholar 

  22. Lee, S. E.; Kim, H. J.; Kim, H.; Park, J. H.; Choi, D. G. Highly robust silicon nanowire/graphene core–shell electrodes without polymeric binders. Nanoscale 2013, 5, 8986–8991.

    Article  Google Scholar 

  23. Cetinkaya, T.; Tocoglu, U.; Cevher, O.; Guler, M. O.; Akbulut, H. Electrochemical performance of silicon/MWCNT composite electrodes for lithium ion batteries. Acta Phys. Polonic. A 2014, 125, 285–287.

    Article  Google Scholar 

  24. Kim, G.; Jeong, S.; Shin, J. H.; Cho, J.; Lee, H. 3D amorphous silicon on nanopillar copper electrodes as anodes for high-rate lithium-ion batteries. ACS Nano 2014, 8, 1907–1912.

    Article  Google Scholar 

  25. Ahn, H. S.; Bard, A. J. Single-nanoparticle collision events: Tunneling electron transfer on a titanium dioxide passivated n-silicon electrode. Angew. Chem., Int. Ed. 2015, 54, 13753–13757.

    Article  Google Scholar 

  26. Chen, B. B.; Chu, S. Y.; Cai, R.; Zhou, J. Q. The effect of diffusion induced fatigue stress on capacity loss in nano silicon particle electrodes during cycling. J. Electrochem. Soc 2016, 163, A2592–A2599.

    Article  Google Scholar 

  27. Iaboni, D. S. M.; Obrovac, M. N. Li15Si4 formation in silicon thin film negative electrodes. J. Electrochem. Soc 2016, 163, A255–A261.

    Article  Google Scholar 

  28. Wang, X. L.; Li, G.; Seo, M. H.; Lui, G.; Hassan, F. M.; Feng, K.; Xiao, X. C.; Chen, Z. W. Carbon-coated silicon nanowires on carbon fabric as self-supported electrodes for flexible lithium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 9551–9558.

    Article  Google Scholar 

  29. Gao, J.; Yu, J. Y.; Zhou, L.; Muhammad, J.; Dong, X. L.; Wang, Y. N.; Yu, H. T.; Quan, X.; Li, S. J.; Jung, Y. G. Interface evolution in the platelet-like SiC@C and SiC@SiO2 monocrystal nanocapsules. Nano Res. 2017, 10, 2644–2656.

    Article  Google Scholar 

  30. Dai, W.; Yu, J. H.; Wang, Y.; Song, Y. Z.; Alam, F. E.; Nishimura, K.; Lin, C. T.; Jiang, N. Enhanced thermal conductivity for polyimide composites with a three-dimensional silicon carbide nanowire@graphene sheets filler. J. Mater. Chem. A 2015, 3, 4884–4891.

    Article  Google Scholar 

  31. Jiao, M. L.; Liu, K. L.; Shi, Z. Q.; Wang, C. Y. SiO2/carbon composite microspheres with hollow core–shell structure as a high-stability electrode for lithium-ion batteries. Chemelectrochem 2017, 4, 542–549.

    Article  Google Scholar 

  32. Nielsen, O. H.; Sethna, J. P.; Stoltze, P.; Jacobsen, K. W.; Nørskov, J. K. Melting a copper cluster: Critical-droplet theory. EPL 1994, 26, 51–56.

    Article  Google Scholar 

  33. Giulian, R.; Kluth, P.; Araujo, L. L.; Llewellyn, D. J.; Ridgway, M. C. Pt nanocrystals formed by ion implantation: A defect-mediated nucleation process. Appl. Phys. Lett. 2007, 91, 093115.

    Article  Google Scholar 

  34. Kamble, M.; Waman, V.; Mayabadi, A.; Funde, A.; Sathe, V.; Shripathi, T.; Pathan, H.; Jadkar, S. Synthesis of cubic nanocrystalline silicon carbide (3C-SiC) films by HW-CVD method. Silicon 2017, 9, 421–429.

    Article  Google Scholar 

  35. Mishra, G.; Behera, G. C.; Singh, S. K.; Parida, K. M. Liquid phase esterification of acetic acid over WO3 promoted β-SiC in a solvent free system. Dalton Trans. 2012, 41, 14299–14308.

    Article  Google Scholar 

  36. Wang, K. Laser based fabrication of graphene. In Advances in Graphene Science; Aliofkhazraei, M., Ed.; In Tech: Rijeka, 2013; Ch. 04.

    Google Scholar 

  37. Zhao, M. Q.; Zhang, Q.; Huang, J. Q.; Tian, G. L.; Nie, J. Q.; Peng, H. J.; Wei, F. Unstacked double-layer templated graphene for high-rate lithium–sulphur batteries. Nat. Commun. 2014, 5, 3410.

    Google Scholar 

  38. De Padova, P.; Ottaviani, C.; Quaresima, C.; Olivieri, B.; Imperatori, P.; Salomon, E.; Angot, T.; Quagliano, L.; Romano, C.; Vona, A. et al. 24 h stability of thick multilayer silicene in air. 2D Mater. 2014, 1, 021003.

    Article  Google Scholar 

  39. Chen, J. H.; Liu, W. N.; Yang, T.; Li, B.; Su, J. D.; Hou, X. M.; Chou, K. C. A facile synthesis of a three-dimensional flexible 3C-SiC sponge and its wettability. Cryst. Growth Des. 2014, 14, 4624–4630.

    Article  Google Scholar 

  40. Guo, W. M.; Xiao, H. N.; Liu, J. X.; Liang, J. J.; Gao, P. Z.; Zeng, G. M. Effects of B4C on the microstructure and phase transformation of porous SiC ceramics. Ceram. Int. 2015, 41, 11117–11124.

    Article  Google Scholar 

  41. Rangasamy, B.; Hwang, J. Y.; Choi, W. Multi layered Si–CuO quantum dots wrapped by graphene for highperformance anode material in lithium-ion battery. Carbon 2014, 77, 1065–1072.

    Article  Google Scholar 

  42. Devi, V. R.; Zabidi, N. A.; Shrivastava, K. N. Interpretation of the Raman spectra of the glassy states of SixS1−x and SixSe1−x. Mater. Chem. Phys. 2013, 141, 651–656.

    Article  Google Scholar 

  43. Nesheva, D.; Dzhurkov, V.; Šćepanović, M.; Bineva, I.; Manolov, E.; Kaschieva, S.; Nedev, N.; Dmitriev, S. N.; Popović, Z. V. High energy electron-beam irradiation effects in Si-SiOx structures. J. Phys.: Conf. Ser. 2016, 682, 012012.

    Google Scholar 

  44. Ning, J.; Wang, D.; Yan, J. D.; Han, D.; Chai, Z.; Cai, W. W.; Zhang, J. C.; Hao, Y. Combined effects of hydrogen annealing on morphological, electrical and structural properties of graphene/r-sapphire. Carbon 2014, 75, 262–270.

    Article  Google Scholar 

  45. Ning, J.; Wang, D.; Zhang, C.; Wang, Z.; Tang, S.; Chen, D.; Shi, Y.; Zhang, J.; Hao, Y. Electrical and optical properties of layer-stacked graphene transparent electrodes using selfsupporting transfer method. Synth. Met. 2015, 203, 215–220.

    Article  Google Scholar 

  46. Luna López, J. A.; Vázquez Valerdi, D. E.; Benítez Lara, A.; García Salgado, G.; Hernández-de la Luz, A. D.; Morales Sánchez, A.; Flores Gracia, F. J.; Dominguez, M. A. Optical and compositional properties of SiOx films deposited by HFCVD: Effect of the hydrogen flow. J. Electronic Mater. 2017, 46, 2309–2322.

    Article  Google Scholar 

  47. Jangid, M. K.; Sonia, F. J.; Kali, R.; Ananthoju, B.; Mukhopadhyay, A. Insights into the effects of multi-layered graphene as buffer/interlayer for a-Si during lithiation/delithiation. Carbon 2017, 111, 602–616.

    Article  Google Scholar 

  48. Zhang, Y. J.; Chen, J. H.; Fan, H. L.; Chou, K. C.; Hou, X. M. Characterization of modified SiC@SiO2 nanocables/MnO2 and their potential application as hybrid electrodes for supercapacitors. Dalton Trans. 2015, 44, 19974–19982.

    Article  Google Scholar 

  49. Ahmed, M.; Khawaja, M.; Notarianni, M.; Wang, B.; Goding, D.; Gupta, B. A thin film approach for SiC-derived graphene as an on-chip electrode for supercapacitors. Nanotechnology 2015, 26, 434005.

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Nos. 61604115 and 61334002), the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2016ZDJC-09), the Key Research and Development program in Shaanxi Province (No. 2017ZDCXL-GY-11-03), the China Postdoctoral Science Foundation (No. 2015M580814), the Postdoctoral Science Research Plan in Shaanxi Province of China and the Fundamental Research Funds for the Central Universities (Nos. XJS15066 and JB161103).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong Wang or Jincheng Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, J., Wang, D., Zhang, J. et al. One-step synthesis of novel snowflake-like Si-O/Si-C nanostructures on 3D graphene/Cu foam by chemical vapor deposition. Nano Res. 11, 1861–1872 (2018). https://doi.org/10.1007/s12274-017-1804-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1804-z

Keywords

Navigation