Growth of ZnO self-converted 2D nanosheet zeolitic imidazolate framework membranes by an ammonia-assisted strategy

Abstract

Shaping crystalline porous materials such as metal organic frameworks (MOFs) and zeolites into two-dimensional (2D) nanosheet forms is highly desirable for developing high-performance molecular sieving membranes. However, conventional exfoliation–deposition is complex and challenging for the large-scale fabrication of nanosheet MOF tubular membranes. Here, for the first time, we report a direct growth technique by ZnO self-conversion and ammonia assistance to fabricate zeolitic imidazolate framework (ZIF) membranes consisting of 2D nanosheets on porous hollow fiber substrates; the membranes are suitable for large-scale industrial gas separation processes. The proposed fabrication process for ZIF nanosheet membranes is based on the localized self-conversion of a pre-deposited thin layer of ZnO in a ligand solution containing ammonium hydroxide as a modulator. The resulting ZIF 2D nanosheet tubular membrane is highly oriented and only 50 nm in thickness. It exhibits excellent molecular sieving performance, with high H2 permeance and selectivity for H2/CO2 separation. This technique shows great promise in MOF nanosheet membrane fabrication for large-scale molecular sieving applications.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Li, H.; Song, Z. N.; Zhang, X. J.; Huang, Y.; Li, S. G.; Mao, Y. T.; Ploehn, H.; Bao, Y.; Yu, M. Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation. Science 2013, 342, 95–98.

    Article  Google Scholar 

  2. [2]

    Wang, S.; Cheng, F.; Zhang, P.; Li, W. C.; Lu, A. H. Fabrication of high-pore volume carbon nanosheets with uniform arrangement of mesopores. Nano Res. 2017, 10, 2106–2116.

    Article  Google Scholar 

  3. [3]

    Tsapatsis, M. 2-Dimensional zeolites. AIChE J. 2014, 60, 2374–2381.

    Article  Google Scholar 

  4. [4]

    Kim, W. G.; Nair, S. Membranes from nanoporous 1D and 2D materials: A review of opportunities, developments, and challenges. Chem. Eng. Sci. 2013, 104, 908–924.

    Article  Google Scholar 

  5. [5]

    Huang, X.; Zheng, B.; Liu, Z. D.; Tan, C. L.; Liu, J. Q.; Chen, B.; Li, H.; Chen, J. Z.; Zhang, X.; Fan, Z. X. et al. Coating two-dimensional nanomaterials with metal–organic frameworks. ACS Nano 2014, 8, 8695–8701.

    Article  Google Scholar 

  6. [6]

    Kagan, C. R.; Fernandez, L. E.; Gogotsi, Y.; Hammond, P. T.; Hersam, M. C.; Nel, A. E.; Penner, R. M.; Willson, C. G.; Weiss, P. S. Nano day: Celebrating the next decade of nanoscience and nanotechnology. ACS Nano 2016, 10, 9093–9103.

    Article  Google Scholar 

  7. [7]

    Kumar, P.; Agrawal, K. V.; Tsapatsis, M.; Mkhoyan, K. A. Quantification of thickness and wrinkling of exfoliated two-dimensional zeolite nanosheets. Nat. Commun. 2015, 6, 7128.

    Article  Google Scholar 

  8. [8]

    Shen, J.; Liu, G. P.; Huang, K.; Chu, Z. Y.; Jin, W. Q.; Xu, N. P. Subnanometer two-dimensional graphene oxide channels for ultrafast gas sieving. ACS Nano 2016, 10, 3398–3409.

    Article  Google Scholar 

  9. [9]

    He, K.; Cao, Z.; Liu, R. R.; Miao, Y.; Ma, H. Y.; Ding, Y. In situ decomposition of metal-organic frameworks into ultrathin nanosheets for the oxygen evolution reaction. Nano Res. 2016, 9, 1856–1865.

    Article  Google Scholar 

  10. [10]

    Meng, J. S.; Niu, C. J.; Xu, L. H.; Li, J. T.; Liu, X.; Wang, X. P.; Wu, Y. Z.; Xu, X. M.; Chen, W. Y.; Li, Q. et al. General oriented formation of carbon nanotubes from metal-organic frameworks. J. Am. Chem. Soc. 2017, 139, 8212–8221.

    Article  Google Scholar 

  11. [11]

    Liu, Y. Y.; Ng, Z. F.; Khan, E. A.; Jeong, H. K.; Ching, C. B.; Lai, Z. P. Synthesis of continuous MOF-5 membranes on porous α-alumina substrates. Micropor. Mesopor. Mater. 2009, 118, 296–301.

    Article  Google Scholar 

  12. [12]

    Liu, X. L.; Wang, C. H.; Wang, B.; Li, K. Novel organicdehydration membranes prepared from zirconium metalorganic frameworks. Adv. Funct. Mater. 2017, 27, 1604311.

    Article  Google Scholar 

  13. [13]

    Venna, S. R.; Carreon, M. A. Highly permeable zeolite imidazolate framework-8 membranes for CO2/CH4 separation. J. Am. Chem. Soc. 2010, 132, 76–78.

    Article  Google Scholar 

  14. [14]

    Li, Y. S.; Liang, F. Y.; Bux, H.; Feldhoff, A.; Yang, W. S.; Caro, J. Molecular sieve membrane: Supported metal-organic framework with high hydrogen selectivity. Angew. Chem., Int. Ed. 2010, 49, 548–551.

    Article  Google Scholar 

  15. [15]

    Liu, Q.; Wang, N. Y.; Caro, J.; Huang, A. S. Bio-inspired polydopamine: A versatile and powerful platform for covalent synthesis of molecular sieve membranes. J. Am. Chem. Soc. 2013, 135, 17679–17682.

    Article  Google Scholar 

  16. [16]

    Zhang, X. F.; Liu, Y. G.; Kong, L. Y.; Liu, H. O.; Qiu, J. S.; Han, W.; Weng, L.-T.; Yeung, K. L.; Zhu, W. D. A simple and scalable method for preparing low-defect ZIF-8 tubular membranes. J. Mater. Chem. A 2013, 1, 10635–10638.

    Article  Google Scholar 

  17. [17]

    Brown, A. J.; Brunelli, N. A.; Eum, K.; Rashidi, F.; Johnson, J. R.; Koros, W. J.; Nair, S. Interfacial microfluidic processing of metal-organic framework hollow fiber membranes. Science 2014, 345, 72–75.

    Article  Google Scholar 

  18. [18]

    Biswal, B. P.; Bhaskar, A.; Banerjee, R.; Kharul, U. K. Selective interfacial synthesis of metal–organic frameworks on a polybenzimidazole hollow fiber membrane for gas separation. Nanoscale 2015, 7, 7291–7298.

    Article  Google Scholar 

  19. [19]

    Cai, G. R.; Zhang, W.; Jiao, L.; Yu, S. H.; Jiang, H. L. Template-directed growth of well-aligned MOF arrays and derived self-supporting electrodes for water splitting. Chem 2017, 2, 791–802.

    Article  Google Scholar 

  20. [20]

    Zhang, X. F.; Liu, Y. G.; Li, S. H.; Kong, L. Y.; Liu, H. O.; Li, Y. S.; Han, W.; Yeung, K. L.; Zhu, W. D.; Yang, W. S. et al. New membrane architecture with high performance: ZIF-8 membrane supported on vertically aligned ZnO nanorods for gas permeation and separation. Chem. Mater. 2014, 26, 1975–1981.

    Article  Google Scholar 

  21. [21]

    Makiura, R.; Motoyanma, S.; Umemura, Y.; Yamanaka, H.; Sakata, O.; Kitagawa, H. Surface nano-architecture of a metal-organic framework. Nat. Mater. 2010, 9, 565–571.

    Article  Google Scholar 

  22. [22]

    Kumar, V.; Zhang, X. Y.; Elyassi, B.; Brewer, D. D.; Gettel, M.; Kumar, S.; Lee, J. A.; Maheshwari, S.; Mittal, A.; Sung, C. Y. et al. Dispersible exfoliated zeolite nanosheets and their application as a selective membrane. Science 2011, 334, 72–75.

    Article  Google Scholar 

  23. [23]

    Falcaro, P.; Okada, K.; Hara, T.; Ikigaki, K.; Tokudome, Y.; Thornton, A. W.; Hill, A. J.; Williams, T.; Doonan, C.; Takahashi, M. Centimetre-scale micropore alignment in oriented polycrystalline metal-organic framework films via heteroepitaxial growth. Nat. Mater. 2017, 16, 342–348.

    Article  Google Scholar 

  24. [24]

    Zhang, H.; Xiao, Q.; Guo, X. H.; Li, N. J.; Kumar, P.; Rangnekar, N.; Jeon, M. Y.; Al-Thabaiti, S.; Narasimharao, K.; Basahel, S. N. et al. Open-pore two-dimensional MFI zeolite nanosheets for the fabrication of hydrocarbon-isomerselective membranes on porous polymer supports. Angew. Chem., Int. Ed. 2016, 55, 7184–7187.

    Article  Google Scholar 

  25. [25]

    Peng, Y.; Li, Y. S.; Ban, Y. J.; Jin, H.; Jiao, W. M.; Liu, X. L.; Yang, W. S. Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science 2014, 346, 1356–1359.

    Article  Google Scholar 

  26. [26]

    Rodenas, T.; Luz, I.; Prieto, G.; Seoane, B.; Miro, H.; Corma, A.; Kapteijn, F.; Llabrés i Xamena, F. X.; Gascon, J. Metal-organic framework nanosheets in polymer composite materials for gas separation. Nat. Mater. 2015, 14, 48–55.

    Article  Google Scholar 

  27. [27]

    Ockwig, N. W.; Nenoff, T. M. Membranes for hydrogen separation. Chem. Rev. 2007, 107, 4078–4110.

    Article  Google Scholar 

  28. [28]

    Huang, A. S.; Dou, W.; Caro, J. Steam-stable zeolitic imidazolate framework ZIF-90 membrane with hydrogen selectivity through covalent functionalization. J. Am. Chem. Soc. 2010, 132, 15562–15564.

    Article  Google Scholar 

  29. [29]

    Li, J. R.; Sculley, J.; Zhou, H. C. Metal–organic frameworks for separations. Chem. Rev. 2012, 112, 869–932.

    Article  Google Scholar 

  30. [30]

    Yang, Q. F.; Cui, X. B.; Yu, J. H.; Lu, J.; Yu, X. Y.; Zhang, X.; Xu, J. Q.; Hou, Q.; Wang, T. G. A series of metal–organic complexes constructed from in situ generated organic amines. CrystEngComm 2008, 10, 1534–1541.

    Article  Google Scholar 

  31. [31]

    Fairen-Jimenez, D.; Galvelis, R.; Torrisi, A.; Gellan, A. D.; Wharmby, M. T.; Wright, P. A.; Mellot-Draznieks, C.; Düren, T. Flexibility and swing effect on the adsorption of energy-related gases on ZIF-8: Combined experimental and simulation study. Dalton Trans. 2012, 41, 10752–10762.

    Article  Google Scholar 

  32. [32]

    Khaletskaya, K.; Turner, S.; Tn, M.; Wannapaiboon, S.; Schneemann, A.; Meyer, R.; Ludwig, A.; van Tendeloo, G.; Fischer, R. A. Self-directed localization of ZIF-8 thin film formation by conversion of ZnO nanolayers. Adv. Funct. Mater. 2014, 24, 4804–4811.

    Article  Google Scholar 

  33. [33]

    Liu, Y.; Wang, N. Y.; Pan, J. H.; Steinbach, F.; Caro, J. In situ synthesis of MOF membranes on ZnAl-CO3 LDH buffer layer-modified substrates. J. Am. Chem. Soc. 2014, 136, 14353–14356.

    Article  Google Scholar 

  34. [34]

    Li, L. X.; Yao, F. F.; Wang, X. J.; Cheng, Y. B.; Wang, H. T. ZIF-11/polybenzimidazole composite membrane with improved hydrogen separation performance. J. Appl. Polym. Sci. 2014, 131, 41056.

    Google Scholar 

  35. [35]

    Park, K.; Ni, Z.; Cote, A. P.; Choi, J. Y.; Huang, R.; Uribe-Romo, F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191.

    Article  Google Scholar 

  36. [36]

    Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O’Keeffe, M.; Yaghi, O. M. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 2008, 319, 939–943.

    Article  Google Scholar 

  37. [37]

    Wang, H. B.; Lin, Y. S. Synthesis and modification of ZSM-5/silicalite bilayer membrane with improved hydrogen separation performance. J. Membr. Sci. 2012, 396, 128–137.

    Article  Google Scholar 

  38. [38]

    Wang, M. H.; Yi, S.; Janout, V.; Regen, S. L. A 7 nm thick polymeric membrane with a H2/CO2 selectivity of 200 that reaches the upper bound. Chem. Mater. 2013, 25, 3785–3787.

    Article  Google Scholar 

  39. [39]

    Zhang, F.; Zou, X. Q.; Gao, X.; Fan, S. J.; Sun, F. X.; Ren, H.; Zhu, G S. Hydrogen selective NH2-MIL-53(Al) MOF membranes with high permeability. Adv. Funct. Mater. 2012, 22, 3583–3590.

    Article  Google Scholar 

  40. [40]

    Carta, M.; Malpass-Evans, R.; Croad, M.; Rogan, Y.; Jansen, J. C.; Bernardo, P.; Bazzarelli, F.; McKeown, N. B. An efficient polymer molecular sieve for membrane gas separations. Science 2013, 339, 303–307.

    Article  Google Scholar 

  41. [41]

    Huang, A. S.; Liu, Q.; Wang, N. Y.; Zhu, Y. Q.; Caro, J. Bicontinuous zeolitic imidazolate framework ZIF-8@GO membrane with enhanced hydrogen selectivity. J. Am. Chem. Soc. 2014, 136, 14686–14689.

    Article  Google Scholar 

  42. [42]

    Zhan, W. W.; Kuang, Q.; Zhou, J. Z.; Kong, X. J.; Xie, Z. X.; Zheng, L. S. Semiconductor@metal-organic framework core–shell heterostructures: A case of ZnO@ZIF-8 nanorods with selective photoelectrochemical response. J. Am. Chem. Soc. 2013, 135, 1926–1933.

    Article  Google Scholar 

  43. [43]

    Yu, M.; Funke, H. H.; Noble, R. D.; Falconer, J. L. H2 Separation using defect-free, inorganic composite membranes. J. Am. Chem. Soc. 2011, 133, 1748–1750.

    Article  Google Scholar 

  44. [44]

    Huang, A. S.; Bux, H.; Steinbach, F.; Caro, J. Molecularsieve membrane with hydrogen permselectivity: ZIF-22 in LTA topology prepared with 3-aminopropyltriethoxysilane as covalent linker. Angew. Chem., Int. Ed. 2010, 49, 4958–4961.

    Article  Google Scholar 

  45. [45]

    Li, Y. S.; Liang, F. Y.; Bux, H.; Yang, W. S.; Caro, J. Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation. J. Membr. Sci. 2010, 354, 48–54.

    Article  Google Scholar 

  46. [46]

    Zhou, S. Y.; Zou, X. Q.; Sun, F. X.; Ren, H.; Liu, J.; Zhang, F.; Zhao, N.; Zhu, G. S. Development of hydrogen-selective CAU-1 MOF membranes for hydrogen purification by “dual-metal-source approach”. Int. J. Hydrogen. Energ. 2013, 38, 5338–5347.

    Article  Google Scholar 

  47. [47]

    Li, W. B.; Zhang, Y. F.; Zhang, C. Y.; Meng, Q.; Xu, Z. H.; Su, P. C.; Li, Q. B.; Shen, C.; Fan, Z.; Qin, L. et al. Transformation of metal-organic frameworks for molecular sieving membranes. Nat. Commun. 2016, 7, 11315.

    Article  Google Scholar 

  48. [48]

    Robeson, L. M. The upper bound revisited. J. Membr. Sci. 2008, 320, 390–400.

    Article  Google Scholar 

  49. [49]

    Gin, D. L.; Noble, R. D. Designing the next generation of chemical separation membranes. Science 2011, 332, 674–676.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21476039 and 21076030). M. T. thanks the Marie Skłodowska-Curie Individual Fellowship for a postdoctoral grant. A. J. H. and O. K. F. gratefully acknowledge funding from the U.S. Dept. of Energy, Office of Science, Basic Energy Sciences Program (No. DE-FG02-08ER15967). The authors also thank Professor Huanting Wang from Monash University for further revising the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiongfu Zhang.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Lin, L., Tu, M. et al. Growth of ZnO self-converted 2D nanosheet zeolitic imidazolate framework membranes by an ammonia-assisted strategy. Nano Res. 11, 1850–1860 (2018). https://doi.org/10.1007/s12274-017-1803-0

Download citation

Keywords

  • nanosheet
  • nanosheet membrane
  • metal organic framework membrane
  • oriented growth
  • gas separation