Hierarchical ferric-cobalt-nickel ternary oxide nanowire arrays supported on graphene fibers as high-performance electrodes for flexible asymmetric supercapacitors

Abstract

Fiber-based supercapacitors (FSCs) are new members of the energy storage family. They present excellent flexibility and have promising applications in lightweight, flexible, and wearable devices. One of the existing challenges of FSCs is enhancing their energy density while retaining the flexibility. We developed a facile and cost-effective method to fabricate a highly capacitive positive electrode based on hierarchical ferric-cobalt-nickel ternary oxide nanowire arrays/graphene fibers and a negative electrode based on polyaniline-derived carbon nanorods/graphene fibers. The elegant microstructures and excellent electrochemical performances of both electrodes enabled us to construct a highperformance flexible asymmetric graphene fiber-based supercapacitor device with an operating voltage of 1.4 V, a specific capacitance up to 61.58 mF·cm–2, and an energy density reaching 16.76 μW·h·cm–2. Moreover, the optimal device presents an outstanding cycling stability with 87.5% initial capacitance retention after 8,000 cycles, and an excellent flexibility with a capacitance retention of 90.9% after 4,000 cycles of repetitive bending.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Xu, P.; Wei, B. Q.; Cao, Z. Y.; Zheng, J.; Gong, K.; Li, F. X.; Yu, J. Y.; Li, Q. W.; Lu, W. B.; Byun, J. H. et al. Stretchable wire-shaped asymmetric supercapacitors based on pristine and MnO2 coated carbon nanotube fibers. ACS Nano 2015, 9, 6088–6096.

    Article  Google Scholar 

  2. [2]

    Wang, B. J.; Fang, X.; Sun, H.; He, S. S.; Ren, J.; Zhang, Y.; Peng, H. S. Fabricating continuous supercapacitor fibers with high performances by integrating all building materials and steps into one process. Adv. Mater. 2015, 27, 7854–7860.

    Article  Google Scholar 

  3. [3]

    Xu, P.; Kang, J. M.; Choi, J. B.; Suhr, J, W.; Yu, J. Y.; Li, F. X.; Byun, J. H.; Kim, B. S.; Chou, T. W. Laminated ultrathin chemical vapor deposition graphene films based stretchable and transparent high-rate supercapacitor. Adv. Mater. 2014, 4, 9437–9445.

    Google Scholar 

  4. [4]

    Sun, H.; You, X.; Deng, J.; Chen, X. L.; Yang, Z. B.; Ren, J.; Peng, H. S. Novelgraphene/carbon nanotube composite fibers for efficient wire-shaped miniature energy devices. Adv. Mater. 2014, 26, 2868–2873.

    Article  Google Scholar 

  5. [5]

    Ren, J.; Bai, W. Y.; Guan, G. Z.; Zhang, Y.; Peng, H. S. Flexible and weaveable capacitor wire based on a carbon nanocomposite fiber. Adv. Mater. 2013, 25, 5965–5970.

    Article  Google Scholar 

  6. [6]

    Ren, J.; Li, L.; Chen, C.; Chen, X. L.; Cai, Z. B.; Qiu, L. B.; Wang, Y. B.; Zhu, X. R.; Peng, H. S. Twisting carbon nanotube fibers for both wire-shaped micro-supercapacitor and micro-battery. Adv. Mater. 2013, 25, 1155–1159.

    Article  Google Scholar 

  7. [7]

    Yang, Z. B.; Deng, J; Chen, X. L.; Ren, J.; Peng, H. S. A highly stretchable, fiber-shaped supercapacitor. Angew. Chem., Int. Ed. 2013, 52, 13453–13457.

    Article  Google Scholar 

  8. [8]

    Chen, X. L.; Qiu, L. B.; Ren, J.; Guan, G. Z.; Lin, H. J.; Zhang, Z. T.; Chen, P. N.; Wang, Y. G.; Peng, H. S. Novel electric double-layer capacitor with a coaxial fiber structure. Adv. Mater. 2013, 25, 6436–6441.

    Article  Google Scholar 

  9. [9]

    Huang, T. Q.; Zheng, B. N.; Kou, L.; Gopalsamy, K.; Xu, Z.; Gao, C.; Meng, Y. N.; Wei, Z. X. Flexible high performance wet-spun graphene fiber supercapacitors. RSC Adv. 2013, 3, 23957–23962.

    Article  Google Scholar 

  10. [10]

    Hu, Y.; Cheng, H. H.; Zhao, F.; Chen, N.; Jiang, L.; Feng, Z. H.; Qu, L. T. All-in-one graphene fiber supercapacitor. Nanoscale 2014, 6, 6448–6451.

    Article  Google Scholar 

  11. [11]

    Xu, Z.; Gao, C. Graphene chiral liquid crystals and macroscopic assembled fibres. Nat. Commun. 2011, 2, 571.

    Article  Google Scholar 

  12. [12]

    Xu, Z.; Zhang, Y.; Li, P. G.; Gao, C. Strong, conductive, lightweight, neat graphene aerogel fibers with aligned pores. ACS Nano 2012, 6, 7103–7113.

    Article  Google Scholar 

  13. [13]

    Dong, Z. L.; Jiang, C. C.; Cheng, H. H.; Zhao, Y.; Shi, G. Q.; Jiang, L.; Qu, L. T. Facile fabrication of light, flexible and multifunctional graphene fibers. Adv. Mater. 2012, 24, 1856–1861.

    Article  Google Scholar 

  14. [14]

    Kou, L.; Huang, T. Q.; Zheng, B. N.; Han, Y.; Zhao, X. L.; Gopalsamy, K.; Sun, H. Y.; Gao, C. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat. Commun. 2014, 5, 3754.

    Article  Google Scholar 

  15. [15]

    Zhao, J. X.; Li, C. W.; Zhang, Q. C.; Zhang, J.; Wang, X. N.; Lin, Z. Y.; Wang, J. J., Lv, W. B.; Lu, C. H.; Wong, C. P. et al. An all-solid-state, lightweight, flexible asymmetric supercapacitor based on cabbage-like ZnCo2O4 and porous V Nnanowires electrode materials. J. Mater. Chem. A 2017, 5, 6928–6936.

    Article  Google Scholar 

  16. [16]

    Frackowiak, E. Carbon materials for supercapacitor application. Phys. Chem. Chem. Phys. 2007, 9, 1774–1785.

    Article  Google Scholar 

  17. [17]

    Zhao, J. X.; Cheng, Y. L.; Yan, X. B.; Sun, D. F.; Zhu, F. L.; Xue, Q. J. Magnetic and electrochemical properties of CuFe2O4 hollow fibers fabricated by simple electrospinning and direct annealing. CrystEngComm 2012, 14, 5879–5885.

    Article  Google Scholar 

  18. [18]

    Zhao, J. X.; Liu, B.; Xu, S.; Yang, J.; Lu, Y. Fabrication and electrochemical properties of porous VNhollow nanofibers. J. Alloys Compd. 2015, 651, 785–792.

    Article  Google Scholar 

  19. [19]

    Gopalsamy, K.; Xu, Z.; Zheng, B. N.; Huang, T. Q.; Kou, L.; Zhao, X. L.; Gao, C. Bismuth oxide nanotubes-graphene fiber-based flexible supercapacitors. Nanoscale 2014, 6, 8595–8600.

    Article  Google Scholar 

  20. [20]

    Zheng, B. N.; Huang, T. Q.; Kou, L.; Zhao, X. L.; Gopalsamy, K.; Gao, C. Graphene fiber-based asymmetric micro-supercapacitors. J. Mater. Chem. A 2014, 2, 9736–9743.

    Article  Google Scholar 

  21. [21]

    Yang, P. H.; Ding, Y.; Lin, Z. Y.; Chen, Z. W.; Li, Y. Z.; Qiang, P. F.; Ebrahimi, M.; Mai, W. J.; Wong, C. P.; Wang, Z. L. Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano Lett. 2014, 14, 731–736.

    Article  Google Scholar 

  22. [22]

    Xia, X. H.; Tu, J. P.; Wang, X. L.; Gu, C. D.; Zhao, X. B. Hierarchically porous NiO film grown by chemical bath deposition via a colloidal crystal template as an electrochemical pseudocapacitor material. J. Mater. Chem. 2011, 21, 671–679.

    Article  Google Scholar 

  23. [23]

    Wang, Y. Y.; Lei, Y.; Li, J.; Gu. L.; Yuan, H. Y.; Xiao, D. Synthesis of 3D-nanonet hollow structured Co3O4 for high capacity supercapacitor. ACS Appl. Mater. Interfaces 2014, 6, 6739–6747.

    Article  Google Scholar 

  24. [24]

    Zhai, T.; Xie, S. L.; Yu, M. H.; Fang, P. P.; Liang, C. L.; Lu, X. H.; Tong, Y. X. Oxygen vacancies enhancing capacitive properties of MnO2 nanorods for wearable asymmetric supercapacitors. Nano Energy 2014, 8, 255–263.

    Article  Google Scholar 

  25. [25]

    Shi, Y.; Pan, L. J.; Liu, B. R.; Wang, Y. Q.; Cui, Y.; Bao, Z. N.; Yu, G. H. Nanostructured conductive polypyrrole hydrogels as high-performance, flexible supercapacitorelectrodes. J. Mater. Chem. A 2014, 2, 6086–6091.

    Article  Google Scholar 

  26. [26]

    Xiong, Q. Q.; Tu, J. P.; Xia, X. H.; Zhao, X. Y.; Gu, C. D.; Wang, X. L. A three-dimensional hierarchical Fe2O3@NiO core/shellnanorod array on carbon cloth: a new class of anode for high-performance lithium-ion batteries. Nanoscale 2013, 5, 7906–7912.

    Article  Google Scholar 

  27. [27]

    Wu, H.; Xu, M.; Wang, Y. C.; Zheng, G. F. Branched Co3O4/Fe2O3 nanowires as high capacity lithium-ion battery anodes. Nano Res. 2013, 6, 167–173.

    Article  Google Scholar 

  28. [28]

    Singh, A. K.; Sarkar, D.; Karmakar, K.; Mandal, K.; Khan, G. G. High-performance supercapacitor electrode based on cobalt oxide-manganese dioxide-nickel oxide ternary 1D hybrid nanotubes. ACS Appl. Mater. Interfaces 2016, 8, 20786–20792.

    Article  Google Scholar 

  29. [29]

    Wu, C.; Cai, J. J.; Zhang, Q. B.; Zhou, X.; Zhu, Y.; Shen, P. K.; Zhang, K. L. hierarchical mesoporous zinc-nickel-cobalt ternary oxide nanowire arrays on nickel foam as highperformance electrodes for supercapacitors. ACS Appl. Mater. Interfaces 2015, 7, 26512–26521.

    Article  Google Scholar 

  30. [30]

    Li, L.; Zhang, Y. Q.; Shi, F.; Zhang, Y. J.; Zhang, J. H.; Gu, C. D.; Wang, X. L.; Tu, J. P. Spinel manganese-nickelcobalt ternary oxide nanowire array for high-performance electrochemical capacitor applications. ACS Appl. Mater. Interfaces 2014, 6, 18040–18047.

    Article  Google Scholar 

  31. [31]

    Wu, H.; Zhang, R.; Liu, X. X.; Lin, D. D.; Pan, W. Electrospinning of Fe, Co, and Ninanofibers:?? Synthesis, assembly, and magnetic properties. Chem. Mater. 2007, 19, 3506–3511.

    Article  Google Scholar 

  32. [32]

    Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.

    Article  Google Scholar 

  33. [33]

    Guo, D.; Zhang, H. M.; Yu, X. Z.; Zhang, M.; Zhang, P.; Li, Q. H.; Wang, T. H. Facile synthesis and excellent electrochemical properties of CoMoO4 nanoplate arrays as supercapacitors. J. Mater. Chem. A 2013, 1, 7247–7254.

    Article  Google Scholar 

  34. [34]

    Zhang, G. Q.; Lou, X. W. Controlled growth of NiCo2O4 nanorods and ultrathin nanosheets on carbon nanofibers for high-performance supercapacitors. Sci. Rep. 2013, 3, 1470–1475.

    Article  Google Scholar 

  35. [35]

    Ji, W. J.; Ji, J. Y.; Cui, X. H.; Chen, J. J.; Liu, D. J.; Deng, H.; Fu, Q. Polypyrrole encapsulation on flower-like porous NiO for advanced high-performance supercapacitors. Chem. Commun. 2015, 51, 7669–7672.

    Article  Google Scholar 

  36. [36]

    Chen, H.; Hu, L. F.; Chen, M.; Yan, Y.; Wu, L. M. Nickel-cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials. Adv. Funct. Mater. 2014, 24, 934–942.

    Article  Google Scholar 

  37. [37]

    Yu, L.; Zhang, G. Q.; Yuan, C. Z.; Lou, X. W. Hierarchical NiCo2O4@MnO2 core–shell heterostructurednanowire arrays on Ni foam as high-performance supercapacitor electrodes. Chem. Commun. 2013, 49, 137–139.

    Article  Google Scholar 

  38. [38]

    Xia, H.; Zhu, D. D.; Luo, Z. T.; Yu, Y.; Shi, X. Q.; Yuan, G. L.; Xie, J. P. Hierarchically structured Co3O4@Pt@MnO2 nanowire arrays for high-performance supercapacitors. Sci. Rep. 2013, 3, 2978–2985.

    Article  Google Scholar 

  39. [39]

    Owusu, K. A.; Qu, L. B.; Li, J. T.; Wang, Z. Y.; Zhao, K. N.; Yang, C.; Hercule, K. M.; Lin, C.; Shi, C. W.; Zhou, L. et al. Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors. Nat. Commun. 2017, 8, 14264.

    Article  Google Scholar 

  40. [40]

    Mai, L. Q.; Yang, F.; Zhao, Y. L.; Xu, X.; Xu, L.; Luo, Y. Z. Hierarchical MnMoO4/CoMoO4 heterostructured nanowires with enhanced supercapacitor performance. Nat. Commun. 2011, 2, 381.

    Article  Google Scholar 

  41. [41]

    Lu, X. F.; Chen, X. Y.; Zhou, W.; Tong, Y. X.; Li, G. R. a-Fe2O3@PANI core–shell nanowire arrays as negative electrodes for asymmetric supercapacitors. ACS Appl. Mater. Interfaces 2015, 7, 14843–14850.

    Article  Google Scholar 

  42. [42]

    Wang, R. T.; Lang, J. W.; Zhang, P.; Lin, Z. Y.; Yan, X. B. Fast and large lithium storage in 3D Porous V Nnanowiresgraphene composite as a superior anode toward highperformance hybrid supercapacitors. Adv. Funct. Mater. 2015, 25, 2270–2278.

    Article  Google Scholar 

  43. [43]

    Yan, N.; Hu, L.; Li, Y.; Wang, Y.; Zhong, H.; Hu, X. Y.; Kong, X. K.; Chen, Q. W. Co3O4 Nanocages for highperformance anode material in lithium-ion batteries. J. Phys. Chem. C 2012, 116, 7227–7235.

    Article  Google Scholar 

  44. [44]

    Tan, G. Q.; Wu, F.; Lu, J.; Chen, R. J.; Li, L.; Amine, K. Controllable crystalline preferred orientation in Li-Co-Ni-Mn oxide cathode thin films for all-solid-state lithium batteries. Nanoscale 2014, 6, 10611–10622.

    Article  Google Scholar 

  45. [45]

    Kim, H.; Seo, D. H.; Kim, H.; Park, I.; Hong, J.; Park, K. Y.; Kang, K. Multicomponent effects on the crystal structures and electrochemical properties of spinel-structured M3O4 (M = Fe, Mn, Co) anodes in lithium rechargeable batteries. Chem. Mater. 2012, 24, 720–725.

    Article  Google Scholar 

  46. [46]

    Cheng, F. Y.; Zhang, T. R.; Zhang, Y.; Du, J.; Han, X. P.; Chen, J. Enhancing electrocatalytic oxygen reduction on MnO2 with vacancies. Angew. Chem., Int. Ed. 2013, 52, 2474–2477.

    Article  Google Scholar 

  47. [47]

    Fu, Y. P.; Cai, X.; Wu, H. W.; Lv, Z. B.; Hou, S. C.; Peng, M.; Yu, X.; Zou, D. C. Fiber supercapacitors utilizing pen ink for flexible/wearable energy storage. Adv. Mater. 2012, 24, 5713–5718.

    Article  Google Scholar 

  48. [48]

    Fu, Y. P.; Wu, H. W.; Ye, S. Y.; Cai, X.; Yu, X.; Hou, S. C.; Kafafy, H.; Zou, D. C. Integrated power fiber for energy conversion and storage. Energy Environ. Sci. 2013, 6, 805–812.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2017YFB0406000), the Key Research Program of Frontier Science of Chinese Academy of Sciences (No. QYZDB-SSW-SLH031), the Natural Science Foundation of Jiangsu Province, China (Nos. BK20160399 and BK20140392), the Transformation of Scientific and Technological Achievements in Jiangsu Province (No. BA2016026), the Postdoctoral Foundation of Jiangsu Province (No. 1601065B), and the Science and Technology Project of Suzhou, China (Nos. SZS201508, ZXG201428, and ZXG201401).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Conghua Lu or Yagang Yao.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Li, C., Zhang, Q. et al. Hierarchical ferric-cobalt-nickel ternary oxide nanowire arrays supported on graphene fibers as high-performance electrodes for flexible asymmetric supercapacitors. Nano Res. 11, 1775–1786 (2018). https://doi.org/10.1007/s12274-017-1795-9

Download citation

Keywords

  • fiber-based supercapacitors
  • ferric-cobalt-nickel ternary oxide nanowire arrays
  • polyaniline-derived carbon nanorods
  • flexibility