Nano Research

, Volume 11, Issue 7, pp 3519–3528 | Cite as

Ultra-dense planar metallic nanowire arrays with extremely large anisotropic optical and magnetic properties

  • Qi Jia
  • Xin OuEmail author
  • Manuel Langer
  • Benjamin Schreiber
  • Jörg Grenzer
  • Pablo F. Siles
  • Raul D. Rodriguez
  • Kai Huang
  • Ye Yuan
  • Alireza Heidarian
  • René Hübner
  • Tiangui You
  • Wenjie Yu
  • Kilian Lenz
  • Jürgen Lindner
  • Xi Wang
  • Stefan Facsko
Research Article


A nanofabrication method for the production of ultra-dense planar metallic nanowire arrays scalable to wafer-size is presented. The method is based on an efficient template deposition process to grow diverse metallic nanowire arrays with extreme regularity in only two steps. First, III–V semiconductor substrates are irradiated by a low-energy ion beam at an elevated temperature, forming a highly ordered nanogroove pattern by a “reverse epitaxy” process due to self-assembly of surface vacancies. Second, diverse metallic nanowire arrays (Au, Fe, Ni, Co, FeAl alloy) are fabricated on these III–V templates by deposition at a glancing incidence angle. This method allows for the fabrication of metallic nanowire arrays with periodicities down to 45 nm scaled up to wafer-size fabrication. As typical noble and magnetic metals, the Au and Fe nanowire arrays produced here exhibited large anisotropic optical and magnetic properties, respectively. The excitation of localized surface plasmon resonances (LSPRs) of the Au nanowire arrays resulted in a high electric field enhancement, which was used to detect phthalocyanine (CoPc) in surface-enhanced Raman scattering (SERS). Furthermore, the Fe nanowire arrays showed a very high in-plane magnetic anisotropy of approximately 412 mT, which may be the largest in-plane magnetic anisotropy field yet reported that is solely induced via shape anisotropy within the plane of a thin film.


self-assembly metallic nanowire array reverse epitaxy magnetic anisotropy anisotropic dielectric function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (Nos. 11622545 and U1732268), One Hundred Talent Program of CAS and the Deutsche Forschungsgemeinschaft (No. LE2443/5-1). R. D. R. acknowledges the supports from the DFG Unit SMINT FOR1713, Tomsk Polytechnic University Competitiveness Enhancement Program grant, Project Number TPU CEP_IHTP_73\2017, and the EU COST Action MP 1302 Nanospectroscopy.

Supplementary material

12274_2017_1793_MOESM1_ESM.pdf (4.5 mb)
Ultra-dense planar metallic nanowire arrays with extremely large anisotropic optical and magnetic properties


  1. [1]
    Xia, Y. N.; Yang, P. D.; Sun, Y. G.; Wu, Y. Y.; Mayers, B.; Gates, B.; Yin, Y. D.; Kim, F.; Yan, Y. Q. One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 2003, 15, 353–389.CrossRefGoogle Scholar
  2. [2]
    Sun, S. H.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 2000, 287, 1989–1992.CrossRefGoogle Scholar
  3. [3]
    Wu, Y.; Xiang, J.; Yang, C.; Lu, W.; Lieber, C. M. Singlecrystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature 2004, 430, 61–65.CrossRefGoogle Scholar
  4. [4]
    Teperik, T. V.; de Abajo, F. J. G.; Borisov, A. G.; Abdelsalam, M.; Bartlett, P. N.; Sugawara, Y.; Baumberg, J. J. Omnidirectional absorption in nanostructured metal surfaces. Nat. Photonics 2008, 2, 299–301.CrossRefGoogle Scholar
  5. [5]
    Kawamori, M.; Asai, T.; Shirai, Y.; Yagi, S.; Oishi, M.; Ichitsubo, T.; Matsubara, E. Three-dimensional nanoelectrode by metal nanowire nonwoven clothes. Nano Lett. 2014, 14, 1932–1937.CrossRefGoogle Scholar
  6. [6]
    Celle, C.; Mayousse, C.; Moreau, E.; Basti, H.; Carella, A.; Simonato, J. P. Highly flexible transparent film heaters based on random networks of silver nanowires. Nano Res. 2012, 5, 427–433.CrossRefGoogle Scholar
  7. [7]
    Wang, X.; Ozkan, C. S. Multisegment nanowire sensors for the detection of DNA molecules. Nano Lett. 2008, 8, 398–404.CrossRefGoogle Scholar
  8. [8]
    Ito, T.; Okazaki, S. Pushing the limits of lithography. Nature 2000, 406, 1027–1031.CrossRefGoogle Scholar
  9. [9]
    Petit, C.; Taleb, A.; Pileni, M. P. Self-organization of magnetic nanosized cobalt particles. Adv. Mater. 1998, 10, 259–261.CrossRefGoogle Scholar
  10. [10]
    Jung, Y. S.; Lee, J. H.; Lee, J. Y.; Ross, C. A. Fabrication of diverse metallic nanowire arrays based on block copolymer self-assembly. Nano Lett. 2010, 10, 3722–3726.CrossRefGoogle Scholar
  11. [11]
    Pang, Y. T.; Meng, G. W.; Zhang, L. D.; Qin, Y.; Gao, X. Y.; Zhao, A. W.; Fang, Q. Arrays of ordered Pb nanowires and their optical properties for laminated polarizers. Adv. Funct. Mater. 2002, 12, 719–722.CrossRefGoogle Scholar
  12. [12]
    Zong, R. L.; Zhou, J.; Li, Q.; Du, B.; Li, B.; Fu, M.; Qi, X. W.; Li, L. T.; Buddhudu, S. Synthesis and optical properties of silver nanowire arrays embedded in anodic alumina membrane. J. Phy. Chem. B 2004, 108, 16713–16716.CrossRefGoogle Scholar
  13. [13]
    Choi, J.; Oh, S. J.; Ju, H.; Cheon, J. Massive fabrication of free-standing one-dimensional Co/Pt nanostructures and modulation of ferromagnetism via a programmable barcode layer effect. Nano Lett. 2005, 5, 2179–2183.CrossRefGoogle Scholar
  14. [14]
    Barranco, A.; Borras, A.; Gonzalez-Elipe, A. R.; Palmero, A. Perspectives on oblique angle deposition of thin films: From fundamentals to devices. Prog. Mater. Sci. 2016, 76, 59–153.CrossRefGoogle Scholar
  15. [15]
    Sugawara, A.; Haga, Y.; Nittono, O. Self-alignment of metallic nanowires in CaF2-based composite films grown on stepped NaCl substrates. J. Magn. Magn. Mater. 1996, 156, 151–152.CrossRefGoogle Scholar
  16. [16]
    Teichert, C.; Lagally, M. G.; Peticolas, L. J.; Bean, J. C.; Tersoff, J. Stress-induced self-organization of nanoscale structures in SiGe/Si multilayer films. Phys. Rev. B 1996, 53, 16334–16337.CrossRefGoogle Scholar
  17. [17]
    Heffelfinger, J. R.; Bench, M. W.; Carter, C. B. On the faceting of ceramic surfaces. Surf. Sci. 1995, 343, L1161–L1166.CrossRefGoogle Scholar
  18. [18]
    Sugawara, A.; Coyle, T.; Hembree, G. G.; Scheinfein, M. R. Self-organized Fe nanowire arrays prepared by shadow deposition on NaCl(110) templates. Appl. Phys. Lett. 1997, 70, 1043–1045.CrossRefGoogle Scholar
  19. [19]
    Teichert, C.; Barthel, J.; Oepen, H. P.; Kirschner, J. Fabrication of nanomagnet arrays by shadow deposition on self-organized semiconductor substrates. Appl. Phys. Lett. 1999, 74, 588–590.CrossRefGoogle Scholar
  20. [20]
    Westphalen, A.; Zabel, H.; Theis-Bröhl, K. Magnetic nanowires on faceted sapphire surfaces. Thin Solid Films 2004, 449, 207–214.CrossRefGoogle Scholar
  21. [21]
    Facsko, S.; Dekorsy, T.; Koerdt, C.; Trappe, C.; Kurz, H.; Vogt, A.; Hartnagel, H. L. Formation of ordered nanoscale semiconductor dots by ion sputtering. Science 1999, 285, 1551–1553.CrossRefGoogle Scholar
  22. [22]
    Bradley, R. M.; Harper, J. M. E. Theory of ripple topography induced by ion bombardment. J. Vac. Sci. Technol. A 1988, 6, 2390–2395.CrossRefGoogle Scholar
  23. [23]
    Norris, S. A. Stress-induced patterns in ion-irradiated silicon: Model based on anisotropic plastic flow. Phys. Rev. B 2012, 86, 235405.CrossRefGoogle Scholar
  24. [24]
    Carter, G.; Vishnyakov, V. Roughening and ripple instabilities on ion-bombarded Si. Phys. Rev. B 1996, 54, 17647–17653.CrossRefGoogle Scholar
  25. [25]
    Ziberi, B.; Frost, F.; Höche, T.; Rauschenbach, B. Ripple pattern formation on silicon surfaces by low-energy ion-beam erosion: Experiment and theory. Phys. Rev. B 2005, 72, 235310.CrossRefGoogle Scholar
  26. [26]
    Mollick, S. A.; Ghose, D.; Shipman, P. D.; Mark Bradley, R. Anomalous patterns and nearly defect-free ripples produced by bombarding silicon and germanium with a beam of gold ions. Appl. Phys. Lett. 2014, 104, 043103.CrossRefGoogle Scholar
  27. [27]
    Toma, A.; Chiappe, D.; Massabò, D.; Boragno, C.; de Mongeot, F. B. Self-organized metal nanowire arrays with tunable optical anisotropy. Appl. Phys. Lett. 2008, 93, 163104.CrossRefGoogle Scholar
  28. [28]
    Oates, T. W. H.; Keller, A.; Noda, S.; Facsko, S. Selforganized metallic nanoparticle and nanowire arrays from ion-sputtered silicon templates. Appl. Phys. Lett. 2008, 93, 063106.CrossRefGoogle Scholar
  29. [29]
    Ranjan, M.; Oates, T. W. H.; Facsko, S.; Möller, W. Optical properties of silver nanowire arrays with 35 nm periodicity. Opt. Lett. 2010, 35, 2576–2578.CrossRefGoogle Scholar
  30. [30]
    Ou, X.; Kögler, R.; Wei, X.; Mücklich, A.; Wang, X.; Skorupa, W.; Facsko, S. Fabrication of horizontal silicon nanowire arrays on insulator by ion irradiation. AIP Adv. 2011, 1, 042174.CrossRefGoogle Scholar
  31. [31]
    Ou, X.; Keller, A.; Helm, M.; Fassbender, J.; Facsko, S. Reverse epitaxy of Ge: Ordered and faceted surface patterns. Phys. Rev. Lett. 2013, 111, 016101.CrossRefGoogle Scholar
  32. [32]
    Ou, X.; Heinig, K. H.; Hübner, R.; Grenzer, J.; Wang, X.; Helm, M.; Fassbender, J.; Facsko, S. Faceted nanostructure arrays with extreme regularity by self-assembly of vacancies. Nanoscale 2015, 7, 18928–18935.CrossRefGoogle Scholar
  33. [33]
    Chowdhury, D.; Ghose, D. Nanoripple formation on GaAs (001) surface by reverse epitaxy during ion beam sputtering at elevated temperature. Appl. Surf. Sci. 2016, 385, 410–416.CrossRefGoogle Scholar
  34. [34]
    Zhu, H. J.; Ramsteiner, M.; Kostial, H.; Wassermeier, M.; Schönherr, H. P.; Ploog, K. Room-temperature spin injection from Fe into GaAs. Phys. Rev. Lett. 2001, 87, 016601.CrossRefGoogle Scholar
  35. [35]
    Chantis, A. N.; Belashchenko, K. D.; Smith, D. L.; Tsymbal, E. Y.; van Schilfgaarde, M.; Albers, R. C. Reversal of spin polarization in Fe/GaAs (001) driven by resonant surface states: First-principles calculations. Phys. Rev. Lett. 2007, 99, 196603.CrossRefGoogle Scholar
  36. [36]
    Pierre-Louis, O.; D’Orsogna, M. R.; Einstein, T. L. Edge diffusion during growth: The kink Ehrlich–Schwoebel effect and resulting instabilities. Phys. Rev. Lett. 1999, 82, 3661–3664.CrossRefGoogle Scholar
  37. [37]
    Kneedler, E. M.; Jonker, B. T.; Thibado, P. M.; Wagner, R. J.; Shanabrook, B. V.; Whitman, L. J. Influence of substrate surface reconstruction on the growth and magnetic properties of fe on GaAs(001). Phys. Rev. B 1997, 56, 8163–8168.CrossRefGoogle Scholar
  38. [38]
    Schönherr, H.-P.; Nötzel, R.; Ma, W. Q.; Ploog, K. H. Evolution of the surface morphology of Fe grown on GaAs (100), (311)A, and (331)A substrates by molecular beam epitaxy. J. Appl. Phys. 2001, 89, 169–173.CrossRefGoogle Scholar
  39. [39]
    Hong, S. W.; Huh, J.; Gu, X. D.; Lee, D. H.; Jo, W. H.; Park, S.; Xu, T.; Russell, T. P. Unidirectionally aligned line patterns driven by entropic effects on faceted surfaces. Proc. Natl. Acad. Sci. USA 2012, 109, 1402–1406.CrossRefGoogle Scholar
  40. [40]
    Hong, S. W.; Voronov, D. L.; Lee, D. H.; Hexemer, A.; Padmore, H. A.; Xu, T.; Russell, T. P. Controlled orientation of block copolymers on defect-free faceted surfaces. Adv. Mater. 2012, 24, 4278–4283.CrossRefGoogle Scholar
  41. [41]
    Biermanns, A.; Pietsch, U.; Grenzer, J.; Hanisch, A.; Facsko, S.; Carbone, G.; Metzger, T. H. X-ray scattering and diffraction from ion beam induced ripples in crystalline silicon. J. Appl. Phys. 2008, 104, 044312.CrossRefGoogle Scholar
  42. [42]
    Garel, M.; Babonneau, D.; Boulle, A.; Pailloux, F.; Coati, A.; Garreau, Y.; Ramos, A. Y.; Tolentino, H. C. N. Self-organized ultrathin FePt nanowires produced by glancingangle ion-beam codeposition on rippled alumina surfaces. Nanoscale 2015, 7, 1437–1445.CrossRefGoogle Scholar
  43. [43]
    Linic, S.; Aslam, U.; Boerigter, C.; Morabito, M. Photochemical transformations on plasmonic metal nanoparticles. Nat. Mater. 2015, 14, 567–576.CrossRefGoogle Scholar
  44. [44]
    Au, L.; Chen, Y.; Zhou, F.; Camargo, P. H. C.; Lim, B.; Li, Z. Y.; Ginger, D. S.; Xia, Y. N. Synthesis and optical properties of cubic gold nanoframes. Nano Res. 2008, 1, 441–449.CrossRefGoogle Scholar
  45. [45]
    Nie, S. M.; Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced raman scattering. Science 1997, 275, 1102–1106.CrossRefGoogle Scholar
  46. [46]
    Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L. T.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Single molecule detection using surface-enhanced raman scattering (SERS). Phys. Rev. Lett. 1997, 78, 1667–1670.CrossRefGoogle Scholar
  47. [47]
    Zhou, Q.; Yang, Y.; Ni, J.; Li, Z. C.; Zhang, Z. J. Rapid recognition of isomers of monochlorobiphenyls at trace levels by surface-enhanced raman scattering using ag nanorods as a substrate. Nano Res. 2010, 3, 423–428.CrossRefGoogle Scholar
  48. [48]
    Johnson, P. B.; Christy, R.-W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370–4379.CrossRefGoogle Scholar
  49. [49]
    Sheremet, E.; Rodriguez, R. D.; Zahn, D. R. T.; Milekhin, A. G.; Rodyakina, E. E.; Latyshev, A. V. Surface-enhanced Raman scattering and gap-mode tip-enhanced Raman scattering investigations of phthalocyanine molecules on gold nanostructured substrates. J. Vac. Sci. Technol. B 2014, 32, 04E110.CrossRefGoogle Scholar
  50. [50]
    Qin, D. H.; Cao, L.; Sun, Q. Y.; Huang, Y.; Li, H. L. Fine magnetic properties obtained in FeCo alloy nanowire arrays. Chem. Phys. Lett. 2002, 358, 484–488.CrossRefGoogle Scholar
  51. [51]
    Wang, J.; Chen, Q.; Zeng, C.; Hou, B. Magnetic-fieldinduced growth of single-crystalline Fe3O4 nanowires. Adv. Mater. 2004, 16, 137–140.CrossRefGoogle Scholar
  52. [52]
    Chaure, N. B.; Stamenov, P.; Rhen, F. M. F.; Coey, J. M. D. Oriented cobalt nanowires prepared by electrodeposition in a porous membrane. J. Magn. Magn. Mater. 2005, 290–291, 1210–1213.CrossRefGoogle Scholar
  53. [53]
    Maurer, T.; Ott, F.; Chaboussant, G.; Soumare, Y.; Piquemal, J. Y.; Viau, G. Magnetic nanowires as permanent magnet materials. Appl. Phys. Lett. 2007, 91, 172501.CrossRefGoogle Scholar
  54. [54]
    Tseng, A. A.; Shirakashi, J.-I.; Nishimura, S.; Miyashita, K.; Notargiacomo, A. Scratching properties of nickel-iron thin film and silicon using atomic force microscopy. J. Appl. Phys. 2009, 106, 044314.CrossRefGoogle Scholar
  55. [55]
    Topp, J.; Heitmann, D.; Kostylev, M. P.; Grundler, D. Making a reconfigurable artificial crystal by ordering bistable magnetic nanowires. Phys. Rev. Lett. 2010, 104, 207205.CrossRefGoogle Scholar
  56. [56]
    Körner, M.; Lenz, K.; Gallardo, R. A.; Fritzsche, M.; Mücklich, A.; Facsko, S.; Lindner, J.; Landeros, P.; Fassbender, J. Twomagnon scattering in permalloy thin films due to rippled substrates. Phys. Rev. B 2013, 88, 054405.CrossRefGoogle Scholar
  57. [57]
    Hayashi, M.; Thomas, L.; Rettner, C.; Moriya, R.; Parkin, S. S. P. Direct observation of the coherent precession of magnetic domain walls propagating along permalloy nanowires. Nat. Phys. 2007, 3, 21–25.CrossRefGoogle Scholar
  58. [58]
    Allwood, D. A.; Xiong, G.; Faulkner, C. C.; Atkinson, D.; Petit, D.; Cowburn, R. Magnetic domain-wall logic. Science 2005, 309, 1688–1692.CrossRefGoogle Scholar
  59. [59]
    Huang, H. T.; Ger, T. R.; Lin, Y. H.; Wei, Z. H. Single cell detection using a magnetic zigzag nanowire biosensor. Lab Chip 2013, 13, 3098–3104.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Qi Jia
    • 1
    • 2
    • 4
  • Xin Ou
    • 1
    • 2
    Email author
  • Manuel Langer
    • 1
  • Benjamin Schreiber
    • 1
  • Jörg Grenzer
    • 1
  • Pablo F. Siles
    • 3
  • Raul D. Rodriguez
    • 3
    • 5
  • Kai Huang
    • 1
    • 2
    • 4
  • Ye Yuan
    • 1
  • Alireza Heidarian
    • 1
  • René Hübner
    • 1
  • Tiangui You
    • 2
  • Wenjie Yu
    • 2
  • Kilian Lenz
    • 1
  • Jürgen Lindner
    • 1
  • Xi Wang
    • 2
  • Stefan Facsko
    • 1
  1. 1.Helmholtz-Zentrum Dresden-RossendorfInstitute of Ion Beam Physics and Materials ResearchDresdenGermany
  2. 2.State Key Laboratory of Functional Material for Informatics, Shanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghaiChina
  3. 3.Technische Universität ChemnitzChemnitzGermany
  4. 4.University of Chinese Academy of SciencesBeijingChina
  5. 5.Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations