Advertisement

Nano Research

, Volume 11, Issue 5, pp 2347–2356 | Cite as

Superelastic wire-shaped supercapacitor sustaining 850% tensile strain based on carbon nanotube@graphene fiber

  • Huimin Wang
  • Chunya Wang
  • Muqiang Jian
  • Qi Wang
  • Kailun Xia
  • Zhe Yin
  • Mingchao Zhang
  • Xiaoping Liang
  • Yingying ZhangEmail author
Research Article

Abstract

Stretchable and flexible supercapacitors are highly desired due to their many potential applications in wearable devices. However, it is challenging to fabricate supercapacitors that can withstand large tensile strain while maintaining high performance. Herein, we report an ultra-stretchable wire-shaped supercapacitor based on carbon nanotube@graphene@MnO2 fibers wound around a superelastic core fiber. The supercapacitor can sustain tensile strain up to 850%, which is the highest value reported for this type of device to date, while maintaining stable electrochemical performance. The energy density of the supercapacitor is 3.37 mWh·cm–3 at a power density of 54.0 mW·cm–3. The results show that 82% of the specific capacitance is retained after 1,000 stretch–release cycles with strains of 700%, demonstrating the superior durability of the elastic supercapacitor and showcasing its potential application in ultra-stretchable flexible electronics.

Keywords

ultra-stretchable supercapacitor carbon nanotube fiber helix structure flexible energy device bionic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51422204, 51372132, and 51672153) and the National Basic Research Program of China (Nos. 2016YFA0200103 and 2013CB228506).

Supplementary material

12274_2017_1782_MOESM1_ESM.pdf (574 kb)
Superelastic wire-shaped supercapacitor sustaining 850% tensile strain based on carbon nanotube@graphene fiber

References

  1. [1]
    Rogers, J. A.; Someya, T.; Huang, Y. G. Materials and mechanics for stretchable electronics. Science 2010, 327, 1603–1607.CrossRefGoogle Scholar
  2. [2]
    Yang, Y. B.; Yang, X. D.; Tan, Y. N.; Yuan, Q. Recent progress in flexible and wearable bio-electronics based on nanomaterials. Nano Res. 2017, 10, 1560–1583.CrossRefGoogle Scholar
  3. [3]
    Bae, J.; Song, M. K.; Park, Y. J.; Kim, J. M.; Liu, M. L.; Wang, Z. L. Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage. Angew. Chem., Int. Ed. 2011, 50, 1683–1687.CrossRefGoogle Scholar
  4. [4]
    Zou, D. C.; Lv, Z. B.; Cai, X.; Hou, S. C. Macro/microfiber-shaped electronic devices. Nano Energy 2012, 1, 273–281.CrossRefGoogle Scholar
  5. [5]
    Li, P. X.; Shi, E. Z.; Yang, Y. B.; Shang, Y. Y.; Peng, Q. Y.; Wu, S. T.; Wei, J. Q.; Wang, K. L.; Zhu, H. W.; Yuan, Q. et al. Carbon nanotube-polypyrrole core–shell sponge and its application as highly compressible supercapacitor electrode. Nano Res. 2014, 7, 209–218.CrossRefGoogle Scholar
  6. [6]
    Choi, S.; Lee, H.; Ghaffari, R.; Hyeon, T.; Kim, D.-H. Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv. Mater. 2016, 28, 4203–4218.CrossRefGoogle Scholar
  7. [7]
    Xiao, X.; Li, T. Q.; Yang, P. H.; Gao, Y.; Jin, H. Y.; Ni, W. J.; Zhan, W. H.; Zhang, X. H.; Cao, Y. Z.; Zhong, J. W. et al. Fiber-based all-solid-state flexible supercapacitors for selfpowered systems. ACS Nano 2012, 6, 9200–9206.CrossRefGoogle Scholar
  8. [8]
    Yu, Z. N.; Thomas, J. Energy storing electrical cables: Integrating energy storage and electrical conduction. Adv. Mater. 2014, 26, 4279–4285.CrossRefGoogle Scholar
  9. [9]
    Liu, L. L.; Niu, Z. Q.; Chen, J. Design and integration of flexible planar micro-supercapacitors. Nano Res. 2017, 10, 1524–1544.CrossRefGoogle Scholar
  10. [10]
    Yu, D. S.; Qian, Q. H.; Wei, L.; Jiang, W. C.; Goh, K. L.; Wei, J.; Zhang, J.; Chen, Y. Emergence of fiber supercapacitors. Chem. Soc. Rev. 2015, 44, 647–662.CrossRefGoogle Scholar
  11. [11]
    Zeng, W.; Shu, L.; Li, Q.; Chen, S.; Wang, F.; Tao, X. M. Fiber-based wearable electronics: A review of materials, fabrication, devices, and applications. Adv. Mater. 2014, 26, 5310–5336.CrossRefGoogle Scholar
  12. [12]
    Zhao, X. L.; Zheng, B. N.; Huang, T. Q.; Gao, C. Graphene-based single fiber supercapacitor with a coaxial structure. Nanoscale 2015, 7, 9399–9404.CrossRefGoogle Scholar
  13. [13]
    Zhang, Y.; Bai, W. Y.; Cheng, X. L.; Ren, J.; Weng, W.; Chen, P. N.; Fang, X.; Zhang, Z. T.; Peng, H. S. Flexible and stretchable lithium-ion batteries and supercapacitors based on electrically conducting carbon nanotube fiber springs. Angew. Chem., Int. Ed. 2014, 53, 14564–14568.CrossRefGoogle Scholar
  14. [14]
    Xu, H. H.; Hu, X. L.; Sun, Y. M.; Yang, H. L.; Liu, X. X.; Huang, Y. H. Flexible fiber-shaped supercapacitors based on hierarchically nanostructured composite electrodes. Nano Res. 2015, 8, 1148–1158.CrossRefGoogle Scholar
  15. [15]
    Chen, X. L.; Qiu, L. B.; Ren, J.; Guan, G. Z.; Lin, H. J.; Zhang, Z. T.; Chen, P. N.; Wang, Y. G.; Peng, H. S. Novel electric double-layer capacitor with a coaxial fiber structure. Adv. Mater. 2013, 25, 6436–6441.CrossRefGoogle Scholar
  16. [16]
    Wen, L.; Li, F.; Cheng, H.-M. Carbon nanotubes and graphene for flexible electrochemical energy storage: From materials to devices. Adv. Mater. 2016, 28, 4306–4337.CrossRefGoogle Scholar
  17. [17]
    Chen, S. H.; Ma, W. J.; Cheng, Y. H.; Weng, Z.; Sun, B.; Wang, L.; Chen, W. P.; Li, F.; Zhu, M. F.; Cheng, H.-M. Scalable non-liquid-crystal spinning of locally aligned graphene fibers for high-performance wearable supercapacitors. Nano Energy 2015, 15, 642–653.CrossRefGoogle Scholar
  18. [18]
    Lu, X. F.; Li, G. R.; Tong, Y. X. A review of negative electrode materials for electrochemical supercapacitors. Sci. China Technol. Sci. 2015, 58, 1799–1808.CrossRefGoogle Scholar
  19. [19]
    Xu, P.; Gu, T. L.; Cao, Z. Y.; Wei, B. Q.; Yu, J. Y.; Li, F. X.; Byun, J. H.; Lu, W. B.; Li, Q. W.; Chou, T. W. Carbon nanotube fiber based stretchable wire-shaped supercapacitors. Adv. Energy Mater. 2014, 4, 1300759.CrossRefGoogle Scholar
  20. [20]
    Meng, Y. N.; Zhao, Y.; Hu, C. G.; Cheng, H. H.; Hu, Y.; Zhang, Z. P.; Shi, G. Q.; Qu, L. T. All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv. Mater. 2013, 25, 2326–2331.CrossRefGoogle Scholar
  21. [21]
    Zhang, Z. T.; Deng, J.; Li, X. Y.; Yang, Z. B.; He, S. S.; Chen, X. L.; Guan, G. Z.; Ren, J.; Peng, H. S. Superelastic supercapacitors with high performances during stretching. Adv. Mater. 2015, 27, 356–362.CrossRefGoogle Scholar
  22. [22]
    Sun, J. F.; Huang, Y.; Fu, C. X.; Wang, Z. Y.; Huang, Y.; Zhu, M. S.; Zhi, C. Y.; Hu, H. High-performance stretchable yarn supercapacitor based on PPy@CNTs@urethane elastic fiber core spun yarn. Nano Energy 2016, 27, 230–237.CrossRefGoogle Scholar
  23. [23]
    Jin, H. Y.; Zhou, L. M.; Mak, C. L.; Huang, H. T.; Tang, W. M.; Chan, H. L. W. High-performance fiber-shaped supercapacitors using carbon fiber thread (CFT)@polyanilne and functionalized CFT electrodes for wearable/stretchable electronics. Nano Energy 2015, 11, 662–670.CrossRefGoogle Scholar
  24. [24]
    Tang, Q. Q.; Chen, M. M.; Wang, G. C.; Bao, H.; Saha, P. A facile prestrain-stick-release assembly of stretchable supercapacitors based on highly stretchable and sticky hydrogel electrolyte. J. Power Sources 2015, 284, 400–408.CrossRefGoogle Scholar
  25. [25]
    Chen, T.; Xue, Y. H.; Roy, A. K.; Dai, L. M. Transparent and stretchable high-performance supercapacitors based on wrinkled graphene electrodes. ACS Nano 2014, 8, 1039–1046.CrossRefGoogle Scholar
  26. [26]
    Yang, Z. B.; Deng, J.; Chen, X. L.; Ren, J.; Peng, H. S. A highly stretchable, fiber-shaped supercapacitor. Angew. Chem., Int. Ed. 2013, 52, 13453–13457.CrossRefGoogle Scholar
  27. [27]
    Cui, H.-W.; Suganuma, K.; Uchida, H. Highly stretchable, electrically conductive textiles fabricated from silver nanowires and cupro fabrics using a simple dipping-drying method. Nano Res. 2015, 8, 1604–1614.CrossRefGoogle Scholar
  28. [28]
    Zheng, Y. M.; Bai, H.; Huang, Z. B.; Tian, X. L.; Nie, F.-Q.; Zhao, Y.; Zhai, J.; Jiang, L. Directional water collection on wetted spider silk. Nature 2010, 463, 640–643.CrossRefGoogle Scholar
  29. [29]
    Yang, Z. B.; Ren, J.; Zhang, Z. T.; Chen, X. L.; Guan, G. Z.; Qin, L. B.; Zhang, Y.; Peng, H. S. Recent advancement of nanostructured carbon for energy applications. Chem. Rev. 2015, 115, 5159–5223.CrossRefGoogle Scholar
  30. [30]
    Choi, C.; Kim, S. H.; Sim, H. J.; Lee, J. A.; Choi, A. Y.; Kim, Y. T.; Lepró, X.; Spinks, G. M.; Baughman, R. H.; Kim, S. J. Stretchable, weavable coiled carbon nanotube/MnO2/polymer fiber solid-state supercapacitors. Sci. Rep. 2015, 5, 9387.CrossRefGoogle Scholar
  31. [31]
    Yu, J. L.; Wang, L. Y.; Lai, X. H.; Pei, S. P.; Zhuang, Z. B.; Meng, L. H.; Huang, Y. D.; Li, Q. W.; Lu, W. B.; Byun, J. H. et al. A durability study of carbon nanotube fiber based stretchable electronic devices under cyclic deformation. Carbon 2015, 94, 352–361.CrossRefGoogle Scholar
  32. [32]
    Ramachandran, R.; Chen, S.-M.; Kumar, G. G. An overview of electrochemical energy storage devices of various electrodes and morphological studies of supercapacitors. Int. J. Electrochem. Sci. 2015, 10, 10355–10388.Google Scholar
  33. [33]
    Yu, G. H.; Hu, L. B.; Vosgueritchian, M.; Wang, H. L.; Xie, X.; McDonough, J. R.; Cui, X.; Cui, Y.; Bao, Z. N. Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. Nano Lett. 2011, 11, 2905–2911.CrossRefGoogle Scholar
  34. [34]
    Choi, C.; Lee, J. A.; Choi, A. Y.; Kim, Y. T.; Lepró, X.; Lima, M. D.; Baughman, R. H.; Kim, S. J. Flexible supercapacitor made of carbon nanotube yarn with internal pores. Adv. Mater. 2014, 26, 2059–2065.CrossRefGoogle Scholar
  35. [35]
    Liu, K.; Sun, Y. H.; Chen, L.; Feng, C.; Feng, X. F.; Jiang, K. L.; Zhao, Y. G.; Fan, S. S. Controlled growth of superaligned carbon nanotube arrays for spinning continuous unidirectional sheets with tunable physical properties. Nano Lett. 2008, 8, 700–705.CrossRefGoogle Scholar
  36. [36]
    Zhang, Y. Y.; Zou, G. F.; Doorn, S. K.; Htoon, H.; Stan, L.; Hawley, M. E.; Sheehan, C. J.; Zhu, Y. T.; Jia, Q. X. Tailoring the morphology of carbon nanotube arrays: From spinnable forests to undulating foams. ACS Nano 2009, 3, 2157–2162.CrossRefGoogle Scholar
  37. [37]
    Zhang, X. B.; Jiang, K. L.; Teng, C.; Liu, P.; Zhang, L.; Kong, J.; Zhang, T. H.; Li, Q. Q.; Fan, S. S. Spinning and processing continuous yarns from 4-inch wafer scale superaligned carbon nanotube arrays. Adv. Mater. 2006, 18, 1505–1510.CrossRefGoogle Scholar
  38. [38]
    Kosynkin, D. V.; Higginbotham, A. L.; Sinitskii, A.; Lomeda, J. R.; Dimiev, A.; Price, B. K.; Tour, J. M. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 2009, 458, 872–876.CrossRefGoogle Scholar
  39. [39]
    Moon, I. K.; Lee, J.; Ruoff, R. S.; Lee, H. Reduced graphene oxide by chemical graphitization. Nat. Commun. 2010, 1, 73.CrossRefGoogle Scholar
  40. [40]
    Higginbotham, A. L.; Kosynkin, D. V.; Sinitskii, A.; Sun, Z. Z.; Tour, J. M. Lower-defect graphene oxide nanoribbons from multiwalled carbon nanotubes. ACS Nano 2010, 4, 2059–2069.CrossRefGoogle Scholar
  41. [41]
    Fang, X.; Yang, Z. B.; Qiu, L. B.; Sun, H.; Pan, S. W.; Deng, J.; Luo, Y. F.; Peng, H. S. Core-sheath carbon nanostructured fibers for efficient wire-shaped dye-sensitized solar cells. Adv. Mater. 2014, 26, 1694–1698.CrossRefGoogle Scholar
  42. [42]
    Chen, T.; Wang, S. T.; Yang, Z. B.; Feng, Q. Y.; Sun, X. M.; Li, L.; Wang, Z. S.; Peng, H. S. Flexible, light-weight, ultrastrong, and semiconductive carbon nanotube fibers for a highly efficient solar cell. Angew. Chem., Int. Ed. 2011, 50, 1815–1819.CrossRefGoogle Scholar
  43. [43]
    Dong, X. C.; Wang, X. W.; Wang, L.; Song, H.; Li, X. G.; Wang, L. H.; Chan-Park, M. B.; Li, C. M.; Chen, P. Synthesis of a MnO2-graphene foam hybrid with controlled MnO2 particle shape and its use as a supercapacitor electrode. Carbon 2012, 50, 4865–4870.CrossRefGoogle Scholar
  44. [44]
    Hsu, Y. K.; Chen, Y. C.; Lin, Y. G.; Chen, L. C.; Chen, K. H. Reversible phase transformation of MnO2 nanosheets in an electrochemical capacitor investigated by in situ Raman spectroscopy. Chem. Commun. 2011, 47, 1252–1254.CrossRefGoogle Scholar
  45. [45]
    Lin, X.-D.; Uzayisenga, V.; Li, J.-F.; Fang, P.-P.; Wu, D.-Y.; Ren, B.; Tian, Z.-Q. Synthesis of ultrathin and compact Au@MnO2 nanoparticles for shell-isolated nanoparticleenhanced Raman spectroscopy (SHINERS). J. Raman Spectr. 2012, 43, 40–45.CrossRefGoogle Scholar
  46. [46]
    Wang, G. M.; Wang, H. Y.; Lu, X. H.; Ling, Y. C.; Yu, M. H.; Zhai, T.; Tong, Y. X.; Li, Y. Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability. Adv. Mater. 2014, 26, 2676–2682.CrossRefGoogle Scholar
  47. [47]
    Yu, D. S.; Zhai, S. L.; Jiang, W. C.; Goh, K.; Wei, L.; Chen, X. D.; Jiang, R. R.; Chen, Y. Transforming pristine carbon fiber tows into high performance solid-state fiber supercapacitors. Adv. Mater. 2015, 27, 4895–4901.CrossRefGoogle Scholar
  48. [48]
    Di Fabio, A.; Giorgi, A.; Mastragostino, M.; Soavi, F. Carbon-poly(3-methylthiophene) hybrid supercapacitors. J. Electrochem. Soc. 2001, 148, A845–A850.CrossRefGoogle Scholar
  49. [49]
    Wu, M.-S.; Huang, C.-Y.; Lin, K.-H. Electrophoretic deposition of nickel oxide electrode for high-rate electrochemical capacitors. J. Power Sources 2009, 186, 557–564.CrossRefGoogle Scholar
  50. [50]
    Fan, Z. J.; Yan, J.; Wei, T.; Zhi, L. J.; Ning, G. Q.; Li, T. Y.; Wei, F. Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv. Funct. Mater. 2011, 21, 2366–2375.CrossRefGoogle Scholar
  51. [51]
    Huang, Y.; Zhong, M.; Huang, Y.; Zhu, M. S.; Pei, Z. X.; Wang, Z. F.; Xue, Q.; Xie, X. M.; Zhi, C. Y. A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte. Nat. Commun. 2015, 6, 10310.CrossRefGoogle Scholar
  52. [52]
    Yang, P. H.; Xiao, X.; Li, Y. Z.; Ding, Y.; Qiang, P. F.; Tan, X. H.; Mai, W. J.; Lin, Z. Y.; Wu, W. Z.; Li, T. Q. et al. Hydrogenated ZnO core–shell nanocables for flexible supercapacitors and self-powered systems. ACS Nano 2013, 7, 2617–2626.CrossRefGoogle Scholar
  53. [53]
    Le, V. T.; Kim, H.; Ghosh, A.; Kim, J.; Chang, J.; Vu, Q. A.; Pham, D. T.; Lee, J. H.; Kim, S. W.; Lee, Y. H. Coaxial fiber supercapacitor using all-carbon material electrodes. ACS Nano 2013, 7, 5940–5947.CrossRefGoogle Scholar
  54. [54]
    Wang, W. J.; Hao, Q. L.; Lei, W.; Xia, X. F.; Wang, X. Graphene/SnO2/polypyrrole ternary nanocomposites as supercapacitor electrode materials. RSC Adv. 2012, 2, 10268–10274.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Huimin Wang
    • 1
  • Chunya Wang
    • 1
  • Muqiang Jian
    • 1
  • Qi Wang
    • 1
  • Kailun Xia
    • 1
  • Zhe Yin
    • 1
  • Mingchao Zhang
    • 1
  • Xiaoping Liang
    • 1
  • Yingying Zhang
    • 1
    Email author
  1. 1.Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, and Center for Nano and Micro Mechanics (CNMM)Tsinghua UniversityBeijingChina

Personalised recommendations