Nano Research

, Volume 11, Issue 3, pp 1589–1598 | Cite as

Size contrast of Pt nanoparticles formed on neighboring domains within suspended and supported graphene

  • Dario Roccella
  • Matteo Amati
  • Hikmet Sezen
  • Rosaria Brescia
  • Luca GregorattiEmail author
Research Article


The relatively small size of thin (one or few layers) graphene flakes makes it extremely difficult to study the behavior of suspended graphene by characterization techniques other than the electron microscopies. Herein, we exploited the capability of spatially resolved photoemission in combination with high resolution transmission electron microscopy to investigate the interaction of thermally evaporated Pt atoms on suspended and supported graphene. Spectroscopic and microscopic analyses reveal that the nucleation of nanometersized Pt particles in these two regions exhibit different trends. While only small nanometer-sized islands are present on the supported graphene, relatively larger clusters of islands were also found on the suspended flakes. The X-ray photoemission C 1s core levels acquired after the Pt deposition show an increase in the number of vacancies in the graphene sheets.


graphene X-ray photoemission spectroscopy scanning photoelectron microscopy nanoparticles platinum suspended films 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We would like to thank all the technical staff of Elettra for the support in the sample and experiment preparation.

Supplementary material

12274_2017_1774_MOESM1_ESM.pdf (1 mb)
Size contrast of Pt nanoparticles formed on neighboring domains within suspended and supported graphene


  1. [1]
    Dan, Y. P.; Lu, Y.; Kybert, N. J.; Luo, Z. T.; Johnson, A. T. C. Intrinsic response of graphene vapor sensors. Nano Lett. 2009, 9, 1472–1475.CrossRefGoogle Scholar
  2. [2]
    He, Q. Y.; Sudibya, H. G.; Yin, Z. Y.; Wu, S. X.; Li, H.; Boey, F.; Huang, W.; Chen, P.; Zhang, H. Centimeter-long and large-scale micropatterns of reduced graphene oxide films: Fabrication and sensing applications. ACS Nano. 2010, 4, 3201–3208.CrossRefGoogle Scholar
  3. [3]
    Li, Y. X.; Wei, Z. D.; Zhao, Q. L.; Ding, W.; Zhang, Q.; Chen, S. G. Preparation of Pt/graphene catalyst and its catalytic performance for oxygen reduction. Acta Phys. Chim. Sin. 2011, 27, 858–862.Google Scholar
  4. [4]
    Li, Y. G.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Hong, G. S.; Dai, H. J. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 7296–7299.CrossRefGoogle Scholar
  5. [5]
    Mas-Ballesté, R.; Gómez-Navarro, C.; Gómez-Herrero, J.; Zamora, F. 2D materials: To graphene and beyond. Nanoscale 2011, 3, 20–30.CrossRefGoogle Scholar
  6. [6]
    Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. The role of graphene for electrochemical energy storage. Nat. Mater. 2015, 14, 271–279.CrossRefGoogle Scholar
  7. [7]
    Shao, Y. Y.; Wang, J.; Wu, H.; Liu, J.; Aksay, I. A.; Lin, Y. H. Graphene based electrochemical sensors and biosensors: A review. Electroanalysis 2010, 22, 1027–1036.CrossRefGoogle Scholar
  8. [8]
    Sheng, Z. H.; Shao, L.; Chen, J. J.; Bao, W. J.; Wang, F. B.; Xia, X. H. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 2011, 5, 4350–4358.CrossRefGoogle Scholar
  9. [9]
    Guo, S. J.; Dong, S. J.; Wang, E. K. Constructing carbon nanotube/Pt nanoparticle hybrids using an imidazoliumsalt-based ionic liquid as a linker. Adv. Mater. 2010, 22, 1269–1272.CrossRefGoogle Scholar
  10. [10]
    Kundu, P.; Nethravathi, C.; Deshpande, P. A.; Rajamathi, M.; Madras, G.; Ravishankar, N. Ultrafast microwave-assisted route to surfactant-free ultrafine Pt nanoparticles on graphene: Synergistic co-reduction mechanism and high catalytic activity. Chem. Mater. 2011, 23, 2772–2780.CrossRefGoogle Scholar
  11. [11]
    Shen, Y.; Xiao, K. J.; Xi, J. Y.; Qiu, X. P. Comparison study of few-layered graphene supported platinum and platinum alloys for methanol and ethanol electro-oxidation. J. Power Sources 2015, 278, 235–244.CrossRefGoogle Scholar
  12. [12]
    Antony, R. P.; Preethi, L. K.; Gupta, B.; Mathews, T.; Dash, S.; Tyagi, A. K. Efficient electrocatalytic performance of thermally exfoliated reduced graphene oxide-Pt hybrid. Mater. Res. Bull. 2015, 70, 60–67.CrossRefGoogle Scholar
  13. [13]
    Grayfer, E. D.; Kibis, L. S.; Stadnichenko, A. I.; Vilkov, O. Y.; Boronin, A. I.; Slavinskaya, E. M.; Stonkus, O. A.; Fedorov, V. E. Ultradisperse Pt nanoparticles anchored on defect sites in oxygen-free few-layer graphene and their catalytic properties in CO oxidation. Carbon 2015, 89, 290–299.CrossRefGoogle Scholar
  14. [14]
    Kim, K.; Lee, H. B. R.; Johnson, R. W.; Tanskanen, J. T.; Liu, N.; Kim, M. G.; Pang, C.; Ahn, C.; Bent, C. S.; Bao Z. N. Selective metal deposition at graphene line defects by atomic layer deposition. Nat. Comm. 2014, 5, 4781.CrossRefGoogle Scholar
  15. [15]
    Gregoratti, L.; Barinov, A.; Benfatto, E.; Cautero, G.; Fava, C.; Lacovig, P.; Lonza, D.; Kiskinova, M.; Tommasini, R.; Mahl, S. et al. 48-Channel electron detector for photoemission spectroscopy and microscopy. Rev. Sci. Instrum. 2004, 75, 64–68.CrossRefGoogle Scholar
  16. [16]
    Kolmakov, A.; Dikin, D. A.; Cote, L. J.; Huang, J. X.; Abyaneh, M. K.; Amati, M.; Gregoratti, L.; Günther, S.; Kiskinova, M. Graphene oxide windows for in situ environmental cell photoelectron spectroscopy. Nat. Nanotechnol. 2011, 6, 651–657.CrossRefGoogle Scholar
  17. [17]
    Kraus, J.; Reichelt, R.; Günther, S.; Gregoratti, L.; Amati, M.; Kiskinova, M.; Yulaev, A.; Vlassiouk, I.; Kolmakov, A. Photoelectron spectroscopy of wet and gaseous samples through graphene membranes. Nanoscale 2014, 6, 14394–14403.CrossRefGoogle Scholar
  18. [18]
    Scardamaglia, M.; Aleman, B.; Amati, M.; Ewels, C.; Pochet, P.; Reckinger, N.; Colomer, J. F.; Skaltsas, T.; Tagmatarchis, N.; Snyders, R. et al. Nitrogen implantation of suspended graphene flakes: Annealing effects and selectivity of sp2 nitrogen species. Carbon 2014, 73, 371–381.CrossRefGoogle Scholar
  19. [19]
    Barinov, A.; Üstü nel, H.; Fabris, S.; Gregoratti, L.; Aballe, L.; Dudin, P.; Baroni, S.; Kiskinova, M. Defect-controlled transport properties of metallic atoms along carbon nanotube surfaces. Phys. Rev. Lett. 2007, 99, 046803.CrossRefGoogle Scholar
  20. [20]
    Barinov, A.; Malcioglu, O. B.; Fabris, S.; Sun, T.; Gregoratti, L.; Dalmiglio, M.; Kiskinova, M. Initial stages of oxidation on graphitic surfaces: Photoemission study and density functional theory calculations. J. Phys. Chem. C 2009, 113, 9009–9013.CrossRefGoogle Scholar
  21. [21]
    Gan, Y. J.; Sun, L. T.; Banhart, F. One- and two-dimensional diffusion of metal atoms in graphene. Small 2008, 4, 587–591.CrossRefGoogle Scholar
  22. [22]
    Morrow, B. H.; Striolo, A. Platinum nanoparticles on carbonaceous materials: The effect of support geometry on nanoparticle mobility, morphology, and melting. Nanotechnology 2008, 19, 195711.CrossRefGoogle Scholar
  23. [23]
    Tang, Y. A.; Yang, Z. X.; Dai, X. Q. Trapping of metal atoms in the defects on graphene. J. Chem. Phys. 2011, 135, 224704.CrossRefGoogle Scholar
  24. [24]
    Wang, H. T.; Feng, Q.; Cheng, Y. C.; Yao, Y. B.; Wang, Q. X.; Li, K.; Schwingenschlogl, U.; Zhang, X. X.; Yang, W. Atomic bonding between metal and graphene. J. Phys. Chem. C 2013, 117, 4632–4638.CrossRefGoogle Scholar
  25. [25]
    Boukhvalov, D. W.; Katsnelson, M. I. Chemical functionalization of graphene with defects. Nano Lett. 2008, 8, 4373–4379.CrossRefGoogle Scholar
  26. [26]
    Ramasse, Q. M.; Zan, R.; Bangert, U.; Boukhvalov, D. W.; Son, Y. W.; Novoselov, K. S. Direct experimental evidence of metal-mediated etching of suspended graphene. ACS Nano 2012, 6, 4063–4071.CrossRefGoogle Scholar
  27. [27]
    Zan, R.; Bangert, U.; Ramasse, Q.; Novoselov, K. S. Interaction of metals with suspended graphene observed by transmission electron microscopy. J. Phys. Chem. Lett. 2012, 3, 953–958.CrossRefGoogle Scholar
  28. [28]
    Okamoto, Y. Density-functional calculations of icosahedral M13 (M = Pt and Au) clusters on graphene sheets and flakes. Chem. Phys. Lett. 2006, 420, 382–386.CrossRefGoogle Scholar
  29. [29]
    Krasheninnikov, A. V.; Lehtinen, P. O.; Foster, A. S.; Pyykkö, P.; Nieminen, R. M. Embedding transition-metal atoms in graphene: Structure, bonding, and magnetism. Phys. Rev. Lett. 2009, 102, 126807.CrossRefGoogle Scholar
  30. [30]
    Ramasse, Q. M.; Seabourne, C. R.; Kepaptsoglou, D. M.; Zan, R.; Bangert, U.; Scott, A. J. Probing the bonding and electronic structure of single atom dopants in graphene with electron energy loss spectroscopy. Nano Lett. 2013, 13, 4989–4995.CrossRefGoogle Scholar
  31. [31]
    Wang, Z. G.; Niu, X. Y.; Su, Q. L.; Deng, H. Q.; Li, Z. J.; Hu, W. Y.; Gao, F. Transition metal adsorption promotes patterning and doping of graphene by electron irradiation. J. Phys. Chem. C 2013, 117, 17644–17649.CrossRefGoogle Scholar
  32. [32]
    Bittencourt, C.; Hecq, M.; Felten, A.; Pireaux, J. J.; Ghijsen, J.; Felicissimo, M. P.; Rudolf, P.; Drube, W.; Ke, X.; Van Tendeloo, G. Platinum–carbon nanotube interaction. Chem. Phys. Lett. 2008, 462, 260–264.CrossRefGoogle Scholar
  33. [33]
    Mason, M. G. Electronic structure of supported small metal clusters. Phys. Rev. B 1983, 27, 748–762.CrossRefGoogle Scholar
  34. [34]
    Chi, D. H.; Cuong, N. T.; Kim, N. A.; Tuan, N. A.; Kim, Y. T.; Bao, H. T.; Mitani, T.; Ozaki, T.; Nagao, H. Electronic structures of Pt clusters adsorbed on (5,5) single wall carbon nanotube. Chem. Phys. Lett. 2006, 432, 213–217.CrossRefGoogle Scholar
  35. [35]
    Shavorskiy, A.; Eralp, T.; Gladys, M. J.; Held, G. A stable pure hydroxyl layer on Pt{110}-(1 × 2). J. Phys. Chem. C 2009, 113, 21755–21764.CrossRefGoogle Scholar
  36. [36]
    Powell, C. J.; Jablonski, A. Surface sensitivity of X-ray photoelectron spectroscopy. Nucl. Instrum. Meth. Phys. Res. A 2009, 601, 54–65.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  • Dario Roccella
    • 1
  • Matteo Amati
    • 2
  • Hikmet Sezen
    • 2
  • Rosaria Brescia
    • 3
  • Luca Gregoratti
    • 2
    Email author
  1. 1.Università degli Studi di Genova - Facoltà di Scienze Matematiche, Fisiche e NaturaliGenovaItaly
  2. 2.Elettra – Sincrotrone Trieste S.C.p.A. in Area Science ParkTriesteItaly
  3. 3.Electron Microscopy FacilityIstituto Italiano di Tecnologia (IIT)GenovaItaly

Personalised recommendations