Advertisement

Nano Research

, Volume 11, Issue 3, pp 1426–1436 | Cite as

Confinedly implanted NiFe2O4-rGO: Cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption

  • Yanlan Zhang
  • Xixi Wang
  • Maosheng CaoEmail author
Research Article

Abstract

Lightweight and high-efficiency microwave absorption materials with tunable electromagnetic properties is a highly sought-after goal and a great challenge for researchers. In this work, a simple strategy of confinedly implanting small NiFe2O4 clusters on reduced graphene oxide is demonstrated, wherein the magnetic clusters are tailored, and more significantly, the electromagnetic properties are highly tuned. The microwave absorption was efficiently optimized yielding a maximum reflection loss of –58 dB and ∼12 times broadening of the bandwidth (at –10 dB). Furthermore, tailoring of the implanted magnetic clusters successfully realized the selective-frequency microwave absorption, and the absorption peak could shift from 4.6 to 16 GHz covering 72% of the measured frequency range. The fascinating performances eventuate from the appropriately tailored clusters, which provide optimal synergistic effects of the dielectric and magnetic loss caused by multi-relaxation, conductance, and resonances. These findings open new avenues for designing microwave absorption materials in future, and the well-tailored NiFe2O4-rGO can be readily applied as a multi-functional microwave absorption material in various fields ranging from civil and commerce to military and aerospace.

Keywords

NiFe2O4 clusters reduced graphene oxide confined growth tunable microwave absorption 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (Nos. 11774027, 51132002, 51072024 and 51372282).

Supplementary material

12274_2017_1758_MOESM1_ESM.pdf (3.2 mb)
Confinedly implanted NiFe2O4-rGO: Cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption

References

  1. [1]
    Li, Y. A.; Zhao, Y.; Lu, X. Y.; Zhu, Y.; Jiang, L. Selfhealing superhydrophobic polyvinylidene fluoride/Fe3O4@ polypyrrole fiber with core–sheath structures for superior microwave absorption. Nano Res. 2016, 9, 2034–2045.CrossRefGoogle Scholar
  2. [2]
    Biswas, S.; Arief, I.; Panja, S. S.; Bose, S. Absorptiondominated electromagnetic wave suppressor derived from ferrite-doped cross-linked graphene framework and conducting carbon. ACS Appl. Mater. Interfaces 2017, 9, 3030–3039.CrossRefGoogle Scholar
  3. [3]
    Chen, Y.; Zhang, H. B.; Huang, Y. Q.; Jiang, Y.; Zheng, W. G.; Yu, Z. Z. Magnetic and electrically conductive epoxy/ graphene/carbonyl iron nanocomposites for efficient electromagnetic interference shielding. Compos. Sci. Technol. 2015, 118, 178–185.CrossRefGoogle Scholar
  4. [4]
    Toneguzzo, P.; Viau, G.; Acher, O.; Fié vet-Vincent, F.; Fié vet, F. Monodisperse ferromagnetic particles for microwave applications. Adv. Mater. 1998, 10, 1032-1035.CrossRefGoogle Scholar
  5. [5]
    Song, C. Q.; Yin, X. W.; Han, M. K.; Li, X. L.; Hou, Z. X.; Zhang, L. T.; Cheng, L. F. Three-dimensional reduced graphene oxide foam modified with ZnO nanowires for enhanced microwave absorption properties. Carbon 2017, 116, 50–58.CrossRefGoogle Scholar
  6. [6]
    Ding, Y.; Zhang, L.; Liao, Q. L.; Zhang, G. J.; Liu, S.; Zhang, Y. Electromagnetic wave absorption in reduced graphene oxide functionalized with Fe3O4/Fe nanorings. Nano Res. 2016, 9, 2018–2025.CrossRefGoogle Scholar
  7. [7]
    Nanni, F.; Travaglia, P.; Valentini, M. Effect of carbon nanofibres dispersion on the microwave absorbing properties of CNF/epoxy composites. Compos. Sci. Technol. 2009, 69, 485–490.CrossRefGoogle Scholar
  8. [8]
    Ding, X.; Huang, Y.; Li, S. P.; Wang, J. G. Preparation and electromagnetic wave absorption properties of FeNi3 nanoalloys generated on graphene-polyaniline nanosheets. RSC Adv. 2016, 6, 31440–31447.CrossRefGoogle Scholar
  9. [9]
    Wu, F.; Xia, Y. L.; Wang, Y.; Wang, M. Y. Two-step reduction of self-assembed three-dimensional (3D) reduced graphene oxide (RGO)/zinc oxide (ZnO) nanocomposites for electromagnetic absorption. J. Mater. Chem. A 2014, 2, 20307–20315.CrossRefGoogle Scholar
  10. [10]
    Liu, Z. W.; Che, R. C.; Wei, Y.; Liu, Y. P.; Elzatahry, A. A.; Dahyan, D. A.; Zhao, D. Y. Broadening microwave absorption via a multi-domain structure. APL Mater. 2017, 5, 046104.CrossRefGoogle Scholar
  11. [11]
    Ding, Y.; Liao, Q. L.; Liu, S.; Guo, H. J.; Sun, Y. H.; Zhang, G. J.; Zhang, Y. Reduced graphene oxide functionalized with cobalt ferrite nanocomposites for enhanced efficient and lightweight electromagnetic wave absorption. Sci. Rep. 2016, 6, 32381.CrossRefGoogle Scholar
  12. [12]
    Dang, Z. M.; Yuan, J. K.; Yao, S. H.; Liao, R. J. Flexible nanodielectric materials with high permittivity for power energy storage. Adv. Mater. 2013, 25, 6334–6365.CrossRefGoogle Scholar
  13. [13]
    Liu, P. J.; Yao, Z. J.; Zhou, J. T.; Yang, Z. H.; Kong, L. B. Small magnetic co-doped NiZn ferrite/graphene nanocomposites and their dual-region microwave absorption performance. J. Mater. Chem. C 2016, 4, 9738–9749.CrossRefGoogle Scholar
  14. [14]
    Dang, Z. M.; Wang, L.; Yin, Y.; Zhang, Q.; Lei, Q. Q. Giant dielectric permittivities in functionalized carbon-nanotube/ electroactive-polymer nanocomposites. Adv. Mater. 2007, 19, 852–857.CrossRefGoogle Scholar
  15. [15]
    Wang, Y.; Lee, W. C.; Manga, K. K.; Ang, P. K.; Lu, J.; Liu, Y. P.; Lim, C. T.; Loh, K. P. Fluorinated graphene for promoting neuro-induction of stem cells. Adv. Mater. 2012, 24, 4285–4290.CrossRefGoogle Scholar
  16. [16]
    Singh, A. P.; Garg, P.; Alam, F.; Singh, K.; Mathur, R. B.; Tandon, R. P.; Chandra, A.; Dhawan, S. K. Phenolic resinbased composite sheets filled with mixtures of reduced graphene oxide, Fe2O3 and carbon fibers for excellent electromagnetic interference shielding in the X-band. Carbon 2012, 50, 3868–3875.CrossRefGoogle Scholar
  17. [17]
    Wang, Y.; Jaiswal, M.; Lin, M.; Saha, S.; Ozyilmaz, B.; Loh, K. P. Electronic properties of nanodiamond decorated graphene. ACS Nano 2012, 6, 1018–1025.CrossRefGoogle Scholar
  18. [18]
    Wen, B.; Cao, M. S.; Lu, M. M.; Cao, W. Q.; Shi, H. L.; Liu, J.; Wang, X. X.; Jin, H. B.; Fang, X. Y.; Wang, W. Z. et al. Reduced graphene oxides: Light-weight and highefficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 2014, 26, 3484–3489.CrossRefGoogle Scholar
  19. [19]
    Ding, Y.; Zhang, Z.; Luo, B. H.; Liao, Q. L.; Liu, S.; Liu, Y. C.; Zhang, Y. Investigation on the broadband electromagnetic wave absorption properties and mechanism of Co3O4- nanosheets/reduced-graphene-oxide composite. Nano Res. 2017, 10, 980–990.CrossRefGoogle Scholar
  20. [20]
    Feng, J.; Pu, F. Z.; Li, Z. X.; Li, X. H.; Hu, X. Y.; Bai, J. T. Interfacial interactions and synergistic effect of CoNi nanocrystals and nitrogen-doped graphene in a composite microwave absorber. Carbon 2016, 104, 214–225.CrossRefGoogle Scholar
  21. [21]
    Kong, L.; Yin, X. W.; Yuan, X. Y.; Zhang, Y. J.; Liu, X. M.; Cheng, L. F.; Zhang, L. T. Electromagnetic wave absorption properties of graphene modified with carbon nanotube/ poly(dimethyl siloxane) composites. Carbon 2014, 73, 185–193.CrossRefGoogle Scholar
  22. [22]
    Liang, J. J.; Wang, Y.; Huang, Y.; Ma, Y. F.; Liu, Z. F.; Cai, J. M.; Zhang, C. D.; Gao, H. J.; Chen, Y. S. Electromagnetic interference shielding of graphene/epoxy composites. Carbon 2009, 47, 922–925.CrossRefGoogle Scholar
  23. [23]
    Yousefi, N.; Sun, X. Y.; Lin, X. Y.; Shen, X.; Jia, J. J.; Zhang, B.; Tang, B. Z.; Chan, M. S.; Kim, J. K. Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv. Mater. 2014, 26, 5480-5487.CrossRefGoogle Scholar
  24. [24]
    Liu, P. B.; Huang, Y.; Zhang, X. Superparamagnetic NiFe2O4 particles on poly(3,4-ethylenedioxythiophene)-graphene: Synthesis, characterization and their excellent microwave absorption properties. Compos. Sci. Technol. 2014, 95, 107–113.CrossRefGoogle Scholar
  25. [25]
    Liu, P. B.; Huang, Y.; Zhang, X. Cubic NiFe2O4 particles on graphene-polyaniline and their enhanced microwave absorption properties. Compos. Sci. Technol. 2015, 107, 54–60.CrossRefGoogle Scholar
  26. [26]
    Qu, B.; Zhu, C. L.; Li, C. Y.; Zhang, X. T.; Chen, Y. J. Coupling hollow Fe3O4-Fe nanoparticles with graphene sheets for high-performance electromagnetic wave absorbing material. ACS Appl. Mater. Interfaces 2016, 8, 3730–3735.CrossRefGoogle Scholar
  27. [27]
    Li, X. H.; Feng, J.; Du, Y. P.; Bai, J. T.; Fan, H. M.; Zhang, H. L.; Peng, Y.; Li, F. S. One-pot synthesis of CoFe2O4/ graphene oxide hybrids and their conversion into FeCo/ graphene hybrids for lightweight and highly efficient microwave absorber. J. Mater. Chem. A 2015, 3, 5535–5546.CrossRefGoogle Scholar
  28. [28]
    Wang, Z. J.; Wu, L. N.; Zhou, J. G.; Jiang, Z. H.; Shen, B. Z. Chemoselectivity-induced multiple interfaces in MWCNT/ Fe3O4@ZnO heterotrimers for whole x-band microwave absorption. Nanoscale 2014, 6, 12298–12302.CrossRefGoogle Scholar
  29. [29]
    Yang, Z. H.; Li, Z. W.; Yang, Y. H.; Xu, Z. J. Optimization of ZnxFe3–xO4 hollow spheres for enhanced microwave attenuation. ACS Appl. Mater. Interfaces 2014, 6, 21911–21915.CrossRefGoogle Scholar
  30. [30]
    Li, Z. X.; Li, X. H.; Zong, Y.; Tan, G. G.; Sun, Y.; Lan, Y. Y.; He, M.; Ren, Z. Y.; Zheng, X. L. Solvothermal synthesis of nitrogen-doped graphene decorated by superparamagnetic Fe3O4 nanoparticles and their applications as enhanced synergistic microwave absorbers. Carbon 2017, 115, 493–502.CrossRefGoogle Scholar
  31. [31]
    Liu, P. B.; Huang, Y.; Sun, X. NiFe2O4 clusters on the surface of reduced graphene oxide and their excellent microwave absorption properties. Mater. Lett. 2013, 112, 117–120.CrossRefGoogle Scholar
  32. [32]
    Arief, I.; Biswas, S.; Bose, S. FeCo-anchored reduced graphene oxide framework-based soft composites containing carbon nanotubes as highly efficient microwave absorbers with excellent heat dissipation ability. ACS Appl. Mater. Interfaces 2017, 9, 19202–19214.CrossRefGoogle Scholar
  33. [33]
    Duan, Y. P.; Liu, Z.; Jing, H.; Zhang, Y. H.; Li, S. Q. Novel microwave dielectric response of Ni/Co-doped manganese dioxides and their microwave absorbing properties. J. Mater. Chem. 2012, 22, 18291–18299.CrossRefGoogle Scholar
  34. [34]
    Ohlan, A.; Singh, K.; Chandra, A.; Dhawan, S. K. Microwave absorption behavior of core-shell structured poly(3,4- ethylenedioxy thiophene)-barium ferrite nanocomposites. ACS Appl. Mater. Interfaces 2010, 2, 927-933.CrossRefGoogle Scholar
  35. [35]
    Yang, Z. H.; Lv, H. L.; Wu, R. B. Rational construction of graphene oxide with MOF-derived porous NiFe@C nanocubes for high-performance microwave attenuation. Nano Res. 2016, 9, 3671–3682.CrossRefGoogle Scholar
  36. [36]
    Che, R. C.; Peng, L. M.; Duan, X. F.; Chen, Q.; Liang, X. L. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 2004, 16, 401–405.CrossRefGoogle Scholar
  37. [37]
    Wang, G. Z.; Gao, Z.; Tang, S. W.; Chen, C. Q.; Duan, F. F.; Zhao, S. C.; Lin, S. W.; Feng, Y. H.; Zhou, L.; Qin, Y. Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano 2012, 6, 11009–11017.CrossRefGoogle Scholar
  38. [38]
    Han, M. K.; Yin, X. W.; Kong, L.; Li, M.; Duan, W. Y.; Zhang, L. T.; Cheng, L. F. Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties. J. Mater. Chem. A 2014, 2, 16403–16409.CrossRefGoogle Scholar
  39. [39]
    Singh, K.; Ohlan, A.; Pham, V. H.; Balasubramaniyan, R.; Varshney, S.; Jang, J.; Hur, S. H.; Choi, W. M.; Kumar, M.; Dhawan, S. K. et al. Nanostructured graphene/Fe3O4 incorporated polyaniline as a high performance shield against electromagnetic pollution. Nanoscale 2013, 5, 2411-2420.CrossRefGoogle Scholar
  40. [40]
    Chen, T. T.; Deng, F.; Zhu, J.; Chen, C. F.; Sun, G. B.; Ma, S. L.; Yang, X. J. Hexagonal and cubic Ni nanocrystals grown on graphene: Phase-controlled synthesis, characterization and their enhanced microwave absorption properties. J. Mater. Chem. 2012, 22, 15190–15197.CrossRefGoogle Scholar
  41. [41]
    Lu, M. M.; Cao, M. S.; Chen, Y. H.; Cao, W. Q.; Liu, J.; Shi, H. L.; Zhang, D. Q.; Wang, W. Z.; Yuan, J. Multiscale assembly of grape-like ferroferric oxide and carbon nanotubes: A smart absorber prototype varying temperature to tune intensities. ACS Appl. Mater. Interfaces 2015, 7, 19408–19415.CrossRefGoogle Scholar
  42. [42]
    Xu, J. J.; Liu, J. W.; Che, R. C.; Liang, C. Y.; Cao, M. S.; Li, Y.; Liu, Z. W. Polarization enhancement of microwave absorption by increasing aspect ratio of ellipsoidal nanorattles with Fe3O4 cores and hierarchical CuSiO3 shells. Nanoscale 2014, 6, 5782–5790.CrossRefGoogle Scholar
  43. [43]
    Sun, H.; Che, R. C.; You, X.; Jiang, Y. S.; Yang, Z. B.; Deng, J.; Qiu, L. B.; Peng, H. S. Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv. Mater. 2014, 26, 8120–8125.CrossRefGoogle Scholar
  44. [44]
    Pan, Y. F.; Wang, G. S.; Liu, L.; Guo, L.; Yu, S.-H. Binary synergistic enhancement of dielectric and microwave absorption properties: A composite of arm symmetrical PBS dendrites and polyvinylidene fluoride. Nano Res. 2017, 10, 284–294.CrossRefGoogle Scholar
  45. [45]
    Gupta, T. K.; Singh, B. P.; Mathur, R. B.; Dhakate, S. R. Multi-walled carbon nanotube-graphene-polyaniline multiphase nano-composite with superior electromagnetic shielding effectiveness. Nanoscale 2014, 6, 842-851.CrossRefGoogle Scholar
  46. [46]
    Liu, Q. H.; Cao, Q.; Zhao, X. B.; Bi, H.; Wang, C.; Wu, D. S.; Che, R. C. Insights into size-dominant magnetic microwave absorption properties of CoNi microflowers via off-axis electron holography. ACS Appl. Mater. Interfaces 2015, 7, 4233–4240.CrossRefGoogle Scholar
  47. [47]
    Wang, G. Z.; Gao, Z.; Wan, G. P.; Lin, S. W.; Yang, P.; Qin, Y. High densities of magnetic nanoparticles supported on graphene fabricated by atomic layer deposition and their use as efficient synergistic microwave absorbers. Nano Res. 2014, 7, 704–716.CrossRefGoogle Scholar
  48. [48]
    Yan, L. L.; Liu, J.; Zhao, S. C.; Zhang, B.; Gao, Z.; Ge, H. B.; Chen, Y.; Cao, M. S.; Qin, Y. Coaxial multi-interface hollow Ni-Al2O3-ZnO nanowires tailored by atomic layer deposition for selective-frequency absorptions. Nano Res. 2017, 10, 1595–1607.CrossRefGoogle Scholar
  49. [49]
    Lv, H. L.; Zhang, H. Q.; Zhao, J.; Ji, G. B.; Du, Y. W. Achieving excellent bandwidth absorption by a mirror growth process of magnetic porous polyhedron structures. Nano Res. 2016, 9, 1813–1822.CrossRefGoogle Scholar
  50. [50]
    Zhang, X. F.; Rao, Y.; Guo, J. J.; Qin, G. W. Multiple-phase carbon-coated FeSn2/Sn nanocomposites for high-frequency microwave absorption. Carbon 2016, 96, 972–979.CrossRefGoogle Scholar
  51. [51]
    Wang, L.; Xing, H. L.; Gao, S. T.; Ji, X. L.; Shen, Z. Y. Porous flower-like NiO@graphene composites with superior microwave absorption properties. J. Mater. Chem. C 2017, 5, 2005–2014.CrossRefGoogle Scholar
  52. [52]
    Lv, H. L.; Ji, G. B.; Liang, X. H.; Zhang, H. Q.; Du, Y. W. A novel rod-like MnO2@Fe loading on graphene giving excellent electromagnetic absorption properties. J. Mater. Chem. C 2015, 3, 5056–5064.CrossRefGoogle Scholar
  53. [53]
    Song, W. L.; Cao, M. S.; Hou, Z. L.; Fang, X. Y.; Shi, X. L.; Yuan, J. High dielectric loss and its monotonic dependence of conducting-dominated multiwalled carbon nanotubes/silica nanocomposite on temperature ranging from 373 to 873 K in X-band. Appl. Phys. Lett. 2009, 94, 233110.CrossRefGoogle Scholar
  54. [54]
    Cao, M. S.; Song, W. L.; Hou, Z. L.; Wen, B.; Yuan, J. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 2010, 48, 788–796.CrossRefGoogle Scholar
  55. [55]
    Wen, B.; Cao, M. S.; Hou, Z. L.; Song, W. L.; Zhang, L.; Lu, M. M.; Jin, H. B.; Fang, X. Y.; Wang, W. Z.; Yuan, J. Temperature dependent microwave attenuation behavior for CNT/silica composites. Carbon 2013, 65, 124–139.CrossRefGoogle Scholar
  56. [56]
    Cao, M. S.; Yang, J.; Song, W. L.; Zhang, D. Q.; Wen, B.; Jin, H. B.; Hou, Z. L.; Yuan, J. Ferroferric oxide/multiwalled carbon nanotube vs. polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption. ACS Appl. Mater. Interfaces 2012, 4, 6949-6956.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  1. 1.School of Material Science and EngineeringBeijing Institute of TechnologyBeijingChina

Personalised recommendations