Skip to main content

Hierarchical Ni-Co-S@Ni-W-O core–shell nanosheet arrays on nickel foam for high-performance asymmetric supercapacitors


Nickel cobalt sulfides (Ni-Co-S) have attracted extensive attention for application in electronic devices owing to their excellent conductivity and high electrochemical capacitance. To facilitate the large-scale practical application of Ni-Co-S, the excellent rate capability and cyclic stability of these compounds must be fully exploited. Thus, hierarchical Ni-Co-S@Ni-W-O (Ni-Co-S-W) core/shell hybrid nanosheet arrays on nickel foam were designed and synthesized herein via a facile three-step hydrothermal method, followed by annealing in a tubular furnace under argon atmosphere. The hybrid structure was directly assembled as a free-standing electrode, which exhibited a high specific capacitance of 1,988 F·g−1 at 2 A·g−1 and retained an excellent capacitance of approximately 1,500 F·g−1 at 30 A·g−1, which is superior to the performance of the pristine Ni-Co-S nanosheet electrode. The assembled asymmetric supercapacitors achieved high specific capacitance (155 F·g−1 at 1 A·g−1), electrochemical stability, and a high energy density of 55.1 W·h·kg−1 at a power density of 799.8 W·kg−1 with the optimized Ni-Co-S-W core/shell nanosheets as the positive electrode, activated carbon as the negative electrode, and 6 M KOH as the electrolyte.

This is a preview of subscription content, access via your institution.


  1. [1]

    El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 2012, 335, 1326–1330.

    Article  Google Scholar 

  2. [2]

    Tang, S. C.; Zhu, B. G.; Shi, X. L.; Wu, J.; Meng, X. K. General controlled sulfidation toward achieving novel nanosheet-built porous square-FeCo2S4-tube arrays for highperformance asymmetric all-solid-state pseudocapacitors. Adv. Energy Mater. 2017, 7, 1601985.

    Article  Google Scholar 

  3. [3]

    Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 2001, 414, 332–337.

    Article  Google Scholar 

  4. [4]

    Zhu, M. S.; Huang, Y.; Huang, Y.; Pei, Z. X.; Xue, Q.; Li, H. F.; Geng, H. Y.; Zhi, C. Y. Capacitance enhancement in a semiconductor nanostructure-based supercapacitor by solar light and a self-powered supercapacitor-photodetector system. Adv. Funct. Mater. 2016, 26, 4481–4490.

    Article  Google Scholar 

  5. [5]

    Wen, L.; Li, F.; Cheng, H. M. Carbon nanotubes and graphene for flexible electrochemical energy storage: From materials to devices. Adv. Mater. 2016, 28, 4306–4337.

    Article  Google Scholar 

  6. [6]

    Liu, L. L.; Niu Z. Q.; Chen J. Design and integration of flexible planar micro-supercapacitors. Nano Res. 2017, 10, 1524–1544.

    Article  Google Scholar 

  7. [7]

    He, W. D.; Wang, C. G.; Li, H. Q.; Deng, X. L.; Xu, X. J.; Zhai, T. Y. Ultrathin and porous Ni3S2/CoNi2S4 3D-network structure for superhigh energy density asymmetric supercapacitors. Adv. Energy Mater. 2017, 1700983.

    Google Scholar 

  8. [8]

    Lu, F.; Zhou, M,; Li, W. R.; Weng, Q. H.; Li, C. L.; Xue, Y. M.; Jiang, X. F.; Zeng, X. H.; Bando, Y.; Golberg, D. Engineering sulfur vacancies and impurities in NiCo2S4 nanostructures toward optimal supercapacitive performance. Nano Energy 2016, 26, 313–323.

    Article  Google Scholar 

  9. [9]

    Li, R.; Wang, S. L.; Huang, Z. C.; Lu, F. X.; He, T. B. NiCo2S4@Co(OH)2 core-shell nanotube arrays in situ grown on Ni foam for high performances asymmetric supercapacitors. J. Power Sources 2016, 312, 156–164.

    Article  Google Scholar 

  10. [10]

    Huang, Y.; Zhu, M. S.; Huang, Y.; Pei, Z. X.; Li, H. F.; Wang, Z. F.; Xue, Q.; Zhi, C. Y. Multifunctional energy storage and conversion devices. Adv. Mater. 2016, 28, 8344–8364.

    Article  Google Scholar 

  11. [11]

    Huang, Y.; Tao, J. Y.; Meng, W. J.; Zhu, M. S.; Huang, Y.; Fu, Y. Q.; Gao, Y. H.; Zhi, C. Y. Super-high rate stretchable polypyrrole-based supercapacitors with excellent cycling stability. Nano Energy 2015, 11, 518–525.

    Article  Google Scholar 

  12. [12]

    Liu, X. X.; Shi, C. D.; Zhai, C. W.; Cheng, M. L.; Liu, Q.; Wang, G. X. Cobalt-based layered metal-organic framework as an ultrahigh capacity supercapacitor electrode material. ACS Appl. Mater. Interfaces 2016, 8, 4585–4591.

    Article  Google Scholar 

  13. [13]

    He, W. D.; Yang, W. J.; Wang, C. G.; Deng, X. L.; Liu, B. D.; Xu, X. J. Morphology-controlled syntheses of α-MnO2 for electrochemical energy storage. Phys. Chem. Chem. Phys. 2016, 18, 15235–15243.

    Article  Google Scholar 

  14. [14]

    Dong, L. B.; Xu, C. J.; Li, Y.; Wu, C. L.; Jiang, B. Z.; Yang, Q.; Zhou, E. L.; Kang, F. Y.; Yang, Q. H. Simultaneous production of high-performance flexible textile electrodes and fiber electrodes for wearable energy storage. Adv. Mater. 2016, 28, 1675–1681.

    Article  Google Scholar 

  15. [15]

    Yang, J.; Yu, C.; Fan, X. M.; Zhao, C. T.; Qiu, J. S. Ultrafast self-assembly of graphene oxide-induced monolithic NiCo-carbonate hydroxide nanowire architectures with a superior volumetric capacitance for supercapacitors. Adv. Funct. Mater. 2015, 25, 2109–2116.

    Article  Google Scholar 

  16. [16]

    Gu, S. S.; Lou, Z.; Li, L. D.; Chen, Z. J.; Ma, X. D.; Shen, G. Z. Fabrication of flexible reduced graphene oxide/Fe2O3 hollow nanospheres based on-chip micro-supercapacitors for integrated photodetecting applications. Nano Res. 2016, 9, 424–434.

    Article  Google Scholar 

  17. [17]

    Guo, K.; Ma, Y.; Li, H. Q.; Zhai, T. Y. Flexible wire-shaped supercapacitors in parallel double helix configuration with stable electrochemical properties under static/dynamic bending. Small 2016, 12, 1024–1033.

    Article  Google Scholar 

  18. [18]

    Wu, X.; Han, Z. C.; Zheng, X.; Yao, S. Y.; Yang, X.; Zhai, T. Y. Core-shell structured Co3O4@NiCo2O4 electrodes grown on flexible carbon fibers with superior electrochemical properties. Nano Energy 2017, 31, 410–417.

    Article  Google Scholar 

  19. [19]

    Zhu, J.; Tang, S. C.; Wu, J.; Shi, X. L.; Zhu, B. G.; Meng, X. K. Wearable high-performance supercapacitors based on silver-sputtered textiles with FeCo2S4–NiCo2S4 composite nanotube-built multitripod architectures as advanced flexible electrodes. Adv. Energy Mater. 2017, 7, 1601234.

    Article  Google Scholar 

  20. [20]

    Hou, L. R.; Shi, Y. Y.; Zhu, S. Q.; Rehan, M.; Pang, G.; Zhang, X. G.; Yuan, C. Z. Hollow mesoporous hetero- NiCo2S4/Co9S8 submicro-spindles: Unusual formation and excellent pseudocapacitance towards hybrid supercapacitors. J. Mater. Chem. A 2017, 5, 133–144.

    Article  Google Scholar 

  21. [21]

    Dai, S. G.; Zhao, B. T.; Qu, C.; Chen, D. C.; Dang, D.; Song, B.; de Glee, B. M.; Fu, J. W.; Hu, C. G.; Wong, C. P. et al. Controlled synthesis of three-phase NixSy/rGO nanoflake electrodes for hybrid supercapacitors with high energy and power density. Nano Energy 2017, 33, 522–531.

    Article  Google Scholar 

  22. [22]

    Niu, Z. Q.; Zhou, W. Y.; Chen, X. D.; Chen, J.; Xie, S. S. Highly compressible and all-solid-state supercapacitors based on nanostructured composite sponge. Adv. Mater. 2015, 27, 6002–6008.

    Article  Google Scholar 

  23. [23]

    Li, Y. J.; Wang, G. L.; Wei, T.; Fan, Z. J.; Yan, P. Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors. Nano Energy 2016, 19, 165–175.

    Article  Google Scholar 

  24. [24]

    Xie, X. Q.; Makaryan, T.; Zhao, M. Q.; Van Aken, K. L.; Gogotsi, Y.; Wang, G. X. MoS2 nanosheets vertically aligned on carbon paper: A freestanding electrode for highly reversible sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1502161.

    Article  Google Scholar 

  25. [25]

    Ji, H. M.; Liu, C.; Wang, T.; Chen, J.; Mao, Z. N.; Zhao, J.; Hou, W. H.; Yang, G. Porous hybrid composites of few-layer MoS2 nanosheets embedded in a carbon matrix with an excellent supercapacitor electrode performance. Small 2015, 11, 6480–6490.

    Article  Google Scholar 

  26. [26]

    Nguyen, V. H.; Shim, J. J. In situ growth of hierarchical mesoporous NiCo2S4@MnO2 arrays on nickel foam for high-performance supercapacitors. Electrochim. Acta 2015, 166, 302–309.

    Article  Google Scholar 

  27. [27]

    Hu, W.; Chen, R. Q.; Xie, W.; Zou, L. L.; Qin, N.; Bao, D. H. CoNi2S4 nanosheet arrays supported on nickel foams with ultrahigh capacitance for aqueous asymmetric supercapacitor applications. ACS Appl. Mater. Interfaces 2014, 6, 19318–19326.

    Article  Google Scholar 

  28. [28]

    Khani H.; Wipf, D. O. Iron oxide nanosheets and pulseelectrodeposited Ni–Co–S nanoflake arrays for highperformance charge storage. ACS Appl. Mater. Interfaces 2017, 9, 6967–6978.

    Article  Google Scholar 

  29. [29]

    Yang, J.; Yu, C.; Fan, X. M.; Liang, S. X.; Li, S. F.; Huang, H. W.; Ling, Z.; Hao, C.; Qiu, J. S. Electroactive edge site-enriched nickel-cobalt sulfide into graphene frameworks for highperformance asymmetric supercapacitors. Energy Environ. Sci. 2016, 9, 1299–1307.

    Article  Google Scholar 

  30. [30]

    Li, X. M.; Li, Q. G.; Wu, Y.; Rui, M. C.; Zeng, H. B. Two-dimensional, porous nickel-cobalt sulfide for high-performance asymmetric supercapacitors. ACS Appl. Mater. Interfaces 2015, 7, 19316–19323.

    Article  Google Scholar 

  31. [31]

    Guan, C.; Xia, X. H.; Meng, N.; Zeng, Z. Y.; Cao, X. H.; Soci, C.; Zhang, H.; Fan, H. J. Hollow core-shell nanostructure supercapacitor electrodes: Gap matters. Energy Environ. Sci. 2012, 5, 9085–9090.

    Article  Google Scholar 

  32. [32]

    Li, Y.; Xu, J.; Feng, T.; Yao, Q. F.; Xie, J. P.; Xia, H. Fe2O3 nanoneedles on ultrafine nickel nanotube arrays as efficient anode for high-performance asymmetric supercapacitors. Adv. Funct. Mater. 2017, 21, 1606728.

    Article  Google Scholar 

  33. [33]

    Lin, L. Y.; Tang, S.; Zhao, S. Q.; Peng, X. H.; Hu, N. Hierarchical three-dimensional FeCo2O4@MnO2 core-shell nanosheet arrays on nickel foam for high-performance supercapacitor. Electrochim. Acta 2017, 228, 175–182.

    Article  Google Scholar 

  34. [34]

    Zhou, S. S.; Chen, J. N.; Gan, L.; Zhang, Q.; Zheng, Z.; Li, H. Q.; Zhai, T. Y. Scalable production of self-supported WS2/CNFs by electrospinning as the anode for highperformance lithium-ion batteries. Sci. Bull. 2016, 61, 227–235.

    Article  Google Scholar 

  35. [35]

    Wang, X.; Zhang, S. W.; Shao, M. H.; Huang, J. Z.; Deng, X. L.; Hou, P. Y.; Xu, X. J. Fabrication of ZnO/ZnFe2O4 hollow nanocages through metal organic frameworks route with enhanced gas sensing properties. Sensor Actuat. B Chem. 2017, 251, 27–33.

    Article  Google Scholar 

  36. [36]

    Zhou, W. J.; Cao, X. H.; Zeng, Z. Y.; Shi, W. H.; Zhu, Y. Y.; Yan, Q. Y.; Liu, H.; Wang, J. Y.; Zhang, H. One-step synthesis of Ni3S2 nanorod@Ni(OH)2 nanosheet core-shell nanostructures on a three-dimensional graphene network for high-performance supercapacitors. Energy Environ. Sci. 2013, 6, 2216–2221.

    Article  Google Scholar 

  37. [37]

    Dong, L. B.; Liang, G. M.; Xu, C. J.; Liu, W. B.; Pan, Z. Z.; Zhou, E. L.; Kang, F. Y.; Yang, Q. H. Multi hierarchical construction-induced superior capacitive performances of flexible electrodes for wearable energy storage. Nano Energy 2017, 34, 242–248.

    Article  Google Scholar 

  38. [38]

    Liu, Z. H.; Tian, X. C.; Xu, X.; He, L.; Yan, M. Y.; Han, C. H.; Li, Y.; Yang, W.; Mai, L. Q. Capacitance and voltage matching between MnO2 nanoflake cathode and Fe2O3 nanoparticle anode for high-performance asymmetric microsupercapacitors. Nano Res. 2017, 10, 2471–2481.

    Article  Google Scholar 

  39. [39]

    Zhang, Y. F.; Zuo, L. Z.; Zhang, L. S.; Yan, J. J.; Lu, H. Y.; Fan, W.; Liu, T. X. Immobilization of NiS nanoparticles on N-doped carbon fiber aerogels as advanced electrode materials for supercapacitors. Nano Res. 2016, 9, 2747–2759.

    Article  Google Scholar 

  40. [40]

    Lv, Q. Y.; Wang, S.; Sun, H. Y.; Luo, J.; Xiao, J.; Xiao, J. W.; Xiao, F.; Wang, S. Solid-state thin-film supercapacitors with ultrafast charge/discharge based on N-doped-carbontubes/ Au-nanoparticles-doped-MnO2 nanocomposites. Nano Lett. 2016, 16, 40–47.

    Article  Google Scholar 

  41. [41]

    Wang, J.; Zhang, X.; Wei, Q. L.; Lv, H. M.; Tian, Y. L.; Tong, Z. Q.; Liu, X. S.; Hao, J.; Qu, H. Y.; Zhao, J. P. et al. 3D self-supported nanopine forest-like Co3O4@CoMoO4 core-shell architectures for high-energy solid state supercapacitors. Nano Energy 2016, 19, 222–233.

    Article  Google Scholar 

  42. [42]

    Chen, S. M.; Yang, G.; Jia Y.; Zheng, H. J. Three-dimensional NiCo2O4@NiWO4 core-shell nanowire arrays for high performance supercapacitors. J. Mater. Chem. A 2017, 5, 1028–1034.

    Article  Google Scholar 

  43. [43]

    He, G. J.; Li, J. M.; Li, W. Y.; Li, B.; Noor, N.; Xu, K. B.; Hu, J. Q.; Parkin, I. P. One pot synthesis of nickel foam supported self-assembly of NiWO4 and CoWO4 nanostructures that act as high performance electrochemical capacitor electrodes. J. Mater. Chem. A 2015, 3, 14272–14278.

    Article  Google Scholar 

  44. [44]

    Xu, X. Y.; Gao, J. P.; Huang, G. B.; Qiu, H. X.; Wang, Z. Y.; Wu, J. Z.; Pan, Z.; Xing, F. B. Fabrication of CoWO4@NiWO4 nanocomposites with good supercapacitve performances. Electrochim. Acta 2015, 174, 837–845.

    Article  Google Scholar 

  45. [45]

    Niu, L. Y.; Li, Z. P.; Xu, Y.; Sun, J. F.; Hong, W.; Liu, X. H.; Wang, J. Q.; Yang, S. R. Simple synthesis of amorphous NiWO4 nanostructure and its application as a novel cathode material for asymmetric supercapacitors. ACS Appl. Mater. Interfaces 2013, 5, 8044–8052.

    Article  Google Scholar 

  46. [46]

    He, W. D.; Wang, C. G.; Zhuge, F.; Deng, X. L.; Xu, X. J.; Zhai, T. Y. Flexible and high energy density asymmetrical supercapacitors based on core/shell conducting polymer nanowires/manganese dioxide nanoflakes. Nano Energy 2017, 35, 242–250.

    Article  Google Scholar 

  47. [47]

    Kuang, M.; Liu, X. Y.; Dong, F.; Zhang, Y. X. Tunable design of layered CuCo2O4 nanosheets@MnO2 nanoflakes core-shell arrays on Ni foam for high-performance supercapacitors. J. Mater. Chem. A 2015, 3, 21528–21536.

    Article  Google Scholar 

  48. [48]

    Liao, J. Y.; Higgins, D.; Lui, G.; Chabot, V.; Xiao, X. C.; Chen, Z. W. Multifunctional TiO2−C/MnO2 core-double-shell nanowire arrays as high-performance 3D electrodes for lithium ion batteries. Nano Lett. 2013, 13, 5467–5473.

    Article  Google Scholar 

  49. [49]

    Ma, L. B.; Hu, Y.; Chen, R. P.; Zhu, G. Y.; Chen, T.; Lv, H. L.; Wang, Y. R.; Liang, J.; Liu, H. X.; Yan, C. Z. et al. Self-assembled ultrathin NiCo2S4 nanoflakes grown on Ni foam as high-performance flexible electrodes for hydrogen evolution reaction in alkaline solution. Nano Energy 2016, 24, 139–147.

    Article  Google Scholar 

  50. [50]

    Bai, D. X.; Wang, F.; Lv, J. M.; Zhang, F. Z.; Xu, S. L. Triple-confined well-dispersed biactive NiCo2S4/Ni0.96S on graphene aerogel for high-efficiency lithium storage. ACS Appl. Mater. Interfaces 2016, 8, 32853–32861.

    Article  Google Scholar 

  51. [51]

    Yue, J.; Gu, X.; Jiang, X. L.; Chen, L.; Wang, N. N.; Yang, J.; Ma, X. J. Coaxial manganese dioxide@N-doped carbon nanotubes as superior anodes for lithium ion batteries. Electrochim. Acta 2015, 182, 676–681.

    Article  Google Scholar 

  52. [52]

    Guo, D.; Zhang, H. M.; Yu, X. Z.; Zhang, M.; Zhang, P.; Li Q. H.; Wang, T. H. Facile synthesis and excellent electrochemical properties of CoMoO4 nanoplate arrays as supercapacitors. J. Mater. Chem. A 2013, 1, 7247–7254.

    Article  Google Scholar 

  53. [53]

    Jin, G. Z.; Xiao, X. X.; Li, S.; Zhao, K. M.; Wu, Y. Z.; Sun, D.; Wang, F. Strongly coupled graphene/Mn3O4 composite with enhanced electrochemical performance for supercapacitor electrode. Electrochim. Acta 2015, 178, 689–698.

    Article  Google Scholar 

  54. [54]

    Zhao, Y.; Hu, L. F.; Zhao, S. Y.; Wu, L. M. Preparation of MnCo2O4@Ni(OH)2 core-shell flowers for asymmetric supercapacitor materials with ultrahigh specific capacitance. Adv. Funct. Mater. 2016, 26, 4085–4093.

    Article  Google Scholar 

  55. [55]

    Zhang, Y. B.; Wang, B.; Liu, F.; Cheng, J. P.; Zhang, X. W.; Zhang, L. Full synergistic contribution of electrodeposited three-dimensional NiCo2O4@MnO2 nanosheet networks electrode for asymmetric supercapacitors. Nano Energy 2016, 27, 627–637.

    Article  Google Scholar 

  56. [56]

    Wen, Y. X.; Peng, S. L.; Wang, Z. L.; Hao, J. X.; Qin, T. F.; Lu, S. Q.; Zhang, J. C.; He, D. Y.; Fan, X. Y.; Cao, G. Z. Facile synthesis of ultrathin NiCo2S4 nano-petals inspired by blooming buds for high-performance supercapacitors. J. Mater. Chem. A 2017, 5, 7144–7152.

    Article  Google Scholar 

  57. [57]

    Zhang, X. D.; Cui, S. Z.; Wang, N. N.; Hou, H. W.; Chen, W. H.; Mi, L. W. Synergistic Effect Initiating Ni1−xCoxMoO4· xH2O as electrodes for high-energy-density asymmetric supercapacitors. Electrochim. Acta 2017, 228, 274–281.

    Article  Google Scholar 

Download references


This work was supported by the National Natural Science Foundation of China (No. 51672109), National Basic Research Program of China (No. 2015CB932600), Program for HUST Interdisciplinary Innovation Team (No. 2015ZDTD038) and the Fundamental Research Funds for the Central University (No. 2017KFKJXX007), Natural Science Foundation of Shandong Province for Excellent Young Scholars (No. ZR2016JL015), Scientific Research Foundation of Zhejiang A&F University (No. 2014FR077).

Author information



Corresponding authors

Correspondence to Qingfeng Sun, Tianyou Zhai or Xijin Xu.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

He, W., Liang, Z., Ji, K. et al. Hierarchical Ni-Co-S@Ni-W-O core–shell nanosheet arrays on nickel foam for high-performance asymmetric supercapacitors. Nano Res. 11, 1415–1425 (2018).

Download citation


  • core/shell structure
  • free-standing electrode
  • supercapacitors
  • high energy density
  • excellent stability