Advertisement

Nano Research

, Volume 10, Issue 12, pp 4398–4414 | Cite as

Multifunctional SnO2/3D graphene hybrid materials for sodium-ion and lithium-ion batteries with excellent rate capability and long cycle life

  • Jung-In Lee
  • Junhua Song
  • Younghwan Cha
  • Shaofang Fu
  • Chengzhou Zhu
  • Xiaolin Li
  • Yuehe Lin
  • Min-Kyu Song
Research Article

Abstract

SnO2 is a promising material for both Li-ion and Na-ion batteries owing to its high theoretical capacities. Unfortunately, the electrochemical performance of SnO2 is unsatisfactory because of the large volume change that occurs during cycling, low electronic conductivity of inactive oxide matrix, and poor kinetics, which are particularly severe in Na-ion batteries. Herein, ultra-fine SnO2 nanocrystals anchored on a unique three-dimensional (3D) porous reduced graphene oxide (rGO) matrix are described as promising bifunctional electrodes for Li-ion and Na-ion batteries with excellent rate capability and long cycle life. Ultra-fine SnO2 nanocrystals of size ∼6 nm are well-coordinated to the graphene sheets that comprise the 3D macro-porous structure. Notably, superior rate capability was obtained up to 3 C (1/n C is a measure of the rate that allows the cell to be charged/discharged in n h) for both batteries. In situ X-ray diffractometry measurements during lithiation (or sodiation) and delithiation (or desodiation) were combined with various electrochemical techniques to reveal the real-time phase evolution. This critical information was linked with the internal resistance, ion diffusivity (\({D_{L{i^ + }}}\) and \({D_{N{a^ + }}}\)), and the unique structure of the composite electrode materials to explain their excellent electrochemical performance. The improved capacity and superior rate capabilities demonstrated in this work can be ascribed to the enhanced transport kinetics of both electrons and ions within the electrode structure because of the well-interconnected, 3D macro-porous rGO matrix. The porous rGO matrix appears to play a more important role in sodium-ion batteries (SIBs), where the larger mass/radius of Na-ions are marked concerns.

Keywords

sodium-ion batteries (SIBs) lithium-ion batteries (LIBs) SnO2 three-dimensional (3D) graphene hybrid materials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the start-up funds of Prof. Song and Prof. Lin at Washington State University.

Supplementary material

12274_2017_1756_MOESM1_ESM.pdf (3.4 mb)
Multifunctional SnO2/3D graphene hybrid materials for sodium-ion and lithium-ion batteries with excellent rate capability and long cycle life

References

  1. [1]
    Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.CrossRefGoogle Scholar
  2. [2]
    Kang, H. Y.; Liu, Y. C.; Cao, K. Z.; Zhao, Y.; Jiao, L. F.; Wang, Y. J.; Yuan, H. T. Update on anode materials for Na-ion batteries. J. Mater. Chem. A 2015, 3, 17899–17913.CrossRefGoogle Scholar
  3. [3]
    Hong, S. Y.; Kim, Y.; Park, Y.; Choi, A.; Choi, N.-S.; Lee, K. T. Charge carriers in rechargeable batteries: Na ions vs. Li ions. Energy Environ. Sci. 2013, 6, 2067–2081.CrossRefGoogle Scholar
  4. [4]
    Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682.CrossRefGoogle Scholar
  5. [5]
    Kim, H.; Kim, H.; Ding, Z.; Lee, M. H.; Lim, K.; Yoon, G.; Kang, K. Recent progress in electrode materials for sodiumion batteries. Adv. Energy Mater. 2016, 6, 1600943.CrossRefGoogle Scholar
  6. [6]
    Han, M. H.; Gonzalo, E.; Singh, G.; Rojo, T. A comprehensive review of sodium layered oxides: Powerful cathodes for Na-ion batteries. Energy Environ. Sci. 2015, 8, 81–102.CrossRefGoogle Scholar
  7. [7]
    Kundu, D.; Talaie, E.; Duffort, V.; Nazar, L. F. The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew. Chem., Int. Ed. 2015, 54, 3431–3448.CrossRefGoogle Scholar
  8. [8]
    Kim, S.-W.; Seo, D.-H.; Ma, X. H.; Ceder, G.; Kang, K. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2012, 2, 710–721.CrossRefGoogle Scholar
  9. [9]
    Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Sodium-ion batteries. Adv. Funct. Mater. 2013, 23, 947–958.CrossRefGoogle Scholar
  10. [10]
    Pan, H. L.; Hu, Y.-S.; Chen, L. Q. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 2013, 6, 2338–2360.CrossRefGoogle Scholar
  11. [11]
    Lei, Y. C.; Li, X.; Liu, L.; Ceder, G. Synthesis and stoichiometry of different layered sodium cobalt oxides. Chem. Mater. 2014, 26, 5288–5296.CrossRefGoogle Scholar
  12. [12]
    Yuan, D. D.; Wang, Y. X.; Cao, Y. L.; Ai, X. P.; Yang, H. X. Improved electrochemical performance of Fe-substituted NaNi0.5Mn0.5O2 cathode materials for sodium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 8585–8591.CrossRefGoogle Scholar
  13. [13]
    Talaie, E.; Duffort, V.; Smith, H. L.; Fultz, B.; Nazar, L. F. Structure of the high voltage phase of layered P2-Na2/3–z[Mn1/2Fe1/2]O2 and the positive effect of Ni substitution on its stability. Energy Environ. Sci. 2015, 8, 2512–2523.CrossRefGoogle Scholar
  14. [14]
    Zheng, J. M.; Yan, P. F.; Kan, W. H.; Wang, C. M.; Manthiram, A. A spinel-integrated P2-type layered composite: High-rate cathode for sodium-ion batteries. J. Electrochem. Soc. 2016, 163, A584–A591.CrossRefGoogle Scholar
  15. [15]
    Barpanda, P.; Oyama, G.; Nishimura, S.-I.; Chung, S.-C.; Yamada, A. A 3.8-V earth-abundant sodium battery electrode. Nat. Commun. 2014, 5, 4358.CrossRefGoogle Scholar
  16. [16]
    Moreau, P.; Guyomard, D.; Gaubicher, J.; Boucher, F. Structure and stability of sodium intercalated phases in olivine FePO4. Chem. Mater. 2010, 22, 4126–4128.CrossRefGoogle Scholar
  17. [17]
    Masquelier, C.; Croguennec, L. Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. Chem. Rev. 2013, 113, 6552–6591.CrossRefGoogle Scholar
  18. [18]
    Jian, Z. L.; Han, W. Z.; Lu, X.; Yang, H. X.; Hu, Y. S.; Zhou, J.; Zhou, Z. B.; Li, J. Q.; Chen, W.; Chen, D. F. et al. Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries. Adv. Energy Mater. 2013, 3, 156–160.CrossRefGoogle Scholar
  19. [19]
    Ellis, B. L.; Makahnouk, W. R. M.; Makimura, Y.; Toghill, K.; Nazar, L. F. A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. Nat. Mater. 2007, 6, 749–753.CrossRefGoogle Scholar
  20. [20]
    Li, W.; Zhou, M.; Li, H. M.; Wang, K. L.; Cheng, S. J.; Jiang, K. A high performance sulfur-doped disordered carbon anode for sodium ion batteries. Energy Environ. Sci. 2015, 8, 2916–2921.CrossRefGoogle Scholar
  21. [21]
    Wang, H.-G.; Yuan, S.; Ma, D.-L.; Zhang, X.-B.; Yan, J.-M. Electrospun materials for lithium and sodium rechargeable batteries: From structure evolution to electrochemical performance. Energy Environ. Sci. 2015, 8, 1660–1681.CrossRefGoogle Scholar
  22. [22]
    Wenzel, S.; Hara, T.; Janek, J.; Adelhelm, P. Roomtemperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies. Energy Environ. Sci. 2011, 4, 3342–3345.CrossRefGoogle Scholar
  23. [23]
    Yang, T. Z.; Qian, T.; Wang, M. F.; Shen, X. W.; Xu, N.; Sun, Z. Z.; Yan, C. L. A Sustainable route from biomass byproduct okara to high content nitrogen-doped carbon sheets for efficient sodium ion batteries. Adv. Mater. 2016, 28, 539–545.CrossRefGoogle Scholar
  24. [24]
    Xiong, H.; Slater, M. D.; Balasubramanian, M.; Johnson, C. S.; Rajh, T. Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries. J. Phys. Chem. Lett. 2011, 2, 2560–2565.CrossRefGoogle Scholar
  25. [25]
    Liu, H. Q.; Cao, K. Z.; Xu, X. H.; Jiao, L. F.; Wang, Y. J.; Yuan, H. T. Ultrasmall TiO2 nanoparticles in situ growth on graphene hybrid as superior anode material for sodium/lithium ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 11239–11245.CrossRefGoogle Scholar
  26. [26]
    Kim, K.-T.; Ali, G.; Chung, K. Y.; Yoon, C. S.; Yashiro, H.; Sun, Y.-K.; Lu, J.; Amine, K.; Myung, S.-T. Anatase titania nanorods as an intercalation anode material for rechargeable sodium batteries. Nano Lett. 2014, 14, 416–422.CrossRefGoogle Scholar
  27. [27]
    Chen, C. J.; Wen, Y. W.; Hu, X. L.; Ji, X. L.; Yan, M. Y.; Mai, L. Q.; Hu, P.; Shan, B.; Huang, Y. H. Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat. Commun. 2015, 6, 6929.CrossRefGoogle Scholar
  28. [28]
    Wu, L. M.; Bresser, D.; Buchholz, D.; Giffin, G. A.; Castro, C. R.; Ochel, A.; Passerini, S. Unfolding the mechanism of sodium insertion in anatase TiO2 nanoparticles. Adv. Energy Mater. 2015, 5, 1401142.CrossRefGoogle Scholar
  29. [29]
    Koo, B.; Chattopadhyay, S.; Shibata, T.; Prakapenka, V. B.; Johnson, C. S.; Rajh, T.; Shevchenko, E. V. Intercalation of sodium ions into hollow iron oxide nanoparticles. Chem. Mater. 2013, 25, 245–252.CrossRefGoogle Scholar
  30. [30]
    Hariharan, S.; Saravanan, K.; Ramar, V.; Balaya, P. A rationally designed dual role anode material for lithium-ion and sodium-ion batteries: Case study of eco-friendly Fe3O4. Phys. Chem. Chem. Physics 2013, 15, 2945–2953.CrossRefGoogle Scholar
  31. [31]
    Jiang, Y. Z.; Hu, M. J.; Zhang, D.; Yuan, T. Z.; Sun, W. P.; Xu, B.; Yan, M. Transition metal oxides for high performance sodium ion battery anodes. Nano Energy 2014, 5, 60–66.CrossRefGoogle Scholar
  32. [32]
    Yuan, S.; Huang, X. L.; Ma, D. L.; Wang, H. G.; Meng, F. Z.; Zhang, X. B. Engraving copper foil to give large-scale binder-free porous CuO arrays for a high-performance sodium-ion battery anode. Adv. Mater. 2014, 26, 2273–2279.CrossRefGoogle Scholar
  33. [33]
    Wang, J. W.; Liu, X. H.; Mao, S. X.; Huang, J. Y. Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction. Nano Lett. 2012, 12, 5897–5902.CrossRefGoogle Scholar
  34. [34]
    Yabuuchi, N.; Matsuura, Y.; Ishikawa, T.; Kuze, S.; Son, J. Y.; Cui, Y. T.; Oji, H.; Komaba, S. Phosphorus electrodes in sodium cells: Small volume expansion by sodiation and the surface-stabilization mechanism in aprotic solvent. ChemElectroChem 2014, 1, 580–589.CrossRefGoogle Scholar
  35. [35]
    Kim, Y.; Park, Y.; Choi, A.; Choi, N. S.; Kim, J.; Lee, J.; Ryu, J. H.; Oh, S. M.; Lee, K. T. An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries. Adv. Mater. 2013, 25, 3045–3049.CrossRefGoogle Scholar
  36. [36]
    Jung, S. C.; Jung, D. S.; Choi, J. W.; Han, Y. K. Atom-level understanding of the sodiation process in silicon anode material. J. Phys. Chem. Lett. 2014, 5, 1283–1288.CrossRefGoogle Scholar
  37. [37]
    Bommier, C.; Ji, X. L. Recent development on anodes for Na-ion batteries. Isr. J. Chem. 2015, 55, 486–507.CrossRefGoogle Scholar
  38. [38]
    Wang, H.; Liang, Q. Q.; Wang, W. J.; An, Y. R.; Li, J. H.; Guo, L. Preparation of flower-like SnO2 nanostructures and their applications in aas-sensing and lithium storage. Cryst. Growth Des. 2011, 11, 2942–2947.CrossRefGoogle Scholar
  39. [39]
    Su, D. W.; Ahn, H. J.; Wang, G. X. SnO2@graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance. Chem. Commun. 2013, 49, 3131–3133.CrossRefGoogle Scholar
  40. [40]
    Hu, R. Z.; Chen, D. C.; Waller, G.; Ouyang, Y. P.; Chen, Y.; Zhao, B. T.; Rainwater, B.; Yang, C. H.; Zhu, M.; Liu, M. L. Dramatically enhanced reversibility of Li2O in SnO2-based electrodes: The effect of nanostructure on high initial reversible capacity. Energy Environ. Sci. 2016, 9, 595–603.CrossRefGoogle Scholar
  41. [41]
    Ding, J.; Li, Z.; Wang, H. L.; Cui, K.; Kohandehghan, A.; Tan, X. H.; Karpuzov, D.; Mitlin, D. Sodiation vs. lithiation phase transformations in a high rate–high stability SnO2 in carbon nanocomposite. J. Mater. Chem. A 2015, 3, 7100–7111.CrossRefGoogle Scholar
  42. [42]
    Xiao, L. F.; Cao, Y. L.; Xiao, J.; Wang, W.; Kovarik, L.; Nie, Z. M.; Liu, J. High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications. Chem. Commun. 2012, 48, 3321–3323.CrossRefGoogle Scholar
  43. [43]
    Li, Z.; Ding, J.; Wang, H. L.; Cui, K.; Stephenson, T.; Karpuzov, D.; Mitlin, D. High rate SnO2–graphene dual aerogel anodes and their kinetics of lithiation and sodiation. Nano Energy 2015, 15, 369–378.CrossRefGoogle Scholar
  44. [44]
    Yang, S.; Yue, W. B.; Zhu, J.; Ren, Y.; Yang, X. J. Graphene-based mesoporous SnO2 with enhanced electrochemical performance for lithium-ion batteries. Adv. Funct. Mater. 2013, 23, 3570–3576.CrossRefGoogle Scholar
  45. [45]
    Hu, X.; Zeng, G.; Chen, J. X.; Lu, C. Z.; Wen, Z. H. 3D graphene network encapsulating SnO2 hollow spheres as a high-performance anode material for lithium-ion batteries. J. Mater. Chem. A 2017, 5, 4535–4542.CrossRefGoogle Scholar
  46. [46]
    Fan, L. L.; Li, X. F.; Yan, B.; Feng, J. M.; Xiong, D. B.; Li, D. J.; Gu, L.; Wen, Y. R.; Lawes, S.; Sun, X. L. Controlled SnO2 crystallinity effectively dominating sodium storage performance. Adv. Energy Mater. 2016, 6, 1502057.CrossRefGoogle Scholar
  47. [47]
    Tian, R.; Zhang, Y. Y.; Chen, Z. H.; Duan, H. N.; Xu, B. Y.; Guo, Y. P.; Kang, H. M.; Li, H.; Liu, H. Z. The effect of annealing on a 3D SnO2/graphene foam as an advanced lithium-ion battery anode. Sci. Rep. 2016, 6, 19195.CrossRefGoogle Scholar
  48. [48]
    Sun, J. H.; Xiao, L. H.; Jiang, S. D.; Li, G. X.; Huang, Y.; Geng, J. X. Fluorine-doped SnO2@graphene porous composite for high capacity lithium-ion batteries. Chem. Mater. 2015, 27, 4594–4603.CrossRefGoogle Scholar
  49. [49]
    Liu, L. L.; An, M. Z.; Yang, P. X.; Zhang, J. Q. Superior cycle performance and high reversible capacity of SnO2/graphene composite as an anode material for lithium-ion batteries. Sci. Rep. 2015, 5, 9055.CrossRefGoogle Scholar
  50. [50]
    Li, Y. M.; Lv, X. J.; Lu, J.; Li, J. H. Preparation of SnO2- nanocrystal/graphene-nanosheets composites and their lithium storage ability. J. Phys. Chem. C 2010, 114, 21770–21774.CrossRefGoogle Scholar
  51. [51]
    Cui, J.; Xu, Z. L.; Yao, S. S.; Huang, J. Q.; Huang, J. Q.; Abouali, S.; Garakani, M. A.; Ning, X. H.; Kim, J. K. Enhanced conversion reaction kinetics in low crystallinity SnO2/CNT anodes for Na-ion batteries. J. Mater. Chem. A 2016, 4, 10964–10973.CrossRefGoogle Scholar
  52. [52]
    Chen, S.; Xin, Y. L.; Zhou, Y. Y.; Zhang, F.; Ma, Y. R.; Zhou, H. H.; Qi, L. M. Branched CNT@SnO2 nanorods@carbon hierarchical heterostructures for lithium ion batteries with high reversibility and rate capability. J. Mater. Chem. A 2014, 2, 15582–15589.CrossRefGoogle Scholar
  53. [53]
    Wang, Y.; Su, D. W.; Wang, C. Y.; Wang, G. X. SnO2@ MWCNT nanocomposite as a high capacity anode material for sodium-ion batteries. Electrochem. Commun. 2013, 29, 8–11.CrossRefGoogle Scholar
  54. [54]
    Kim, D.; Lee, D.; Kim, J.; Moon, J. Electrospun Ni-added SnO2–carbon nanofiber composite anode for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 2012, 4, 5408–5415.CrossRefGoogle Scholar
  55. [55]
    Wang, M. Y.; Li, S.; Zhang, Y. M.; Huang, J. G. Hierarchical SnO2/carbon nanofibrous composite derived from cellulose substance as anode material for lithium-ion batteries. Chem.—Eur. J. 2015, 21, 16195–16202.CrossRefGoogle Scholar
  56. [56]
    Liu, Y.; Jiao, Y.; Yin, B. S.; Zhang, S. W.; Qu, F. Y.; Wu, X. Enhanced electrochemical performance of hybrid SnO2@MOx (M = Ni, Co, Mn) core–shell nanostructures grown on flexible carbon fibers as the supercapacitor electrode materials. J. Mater. Chem. A 2015, 3, 3676–3682.CrossRefGoogle Scholar
  57. [57]
    Wang, M. S.; Wang, Z. Q.; Yang, Z. L.; Huang, Y.; Zheng, J. M.; Li, X. Carbon nanotube-graphene nanosheet conductive framework supported SnO2 aerogel as a high performance anode for lithium ion battery. Electrochim. Acta 2017, 240, 7–15.CrossRefGoogle Scholar
  58. [58]
    Fan, J.; Wang, T.; Yu, C.; Tu, B.; Jiang, Z.; Zhao, D. Ordered, Nanostructured tin-based oxides/carbon composite as the negative-electrode material for lithium-ion batteries. Adv. Mater. 2004, 16, 1432–1436.CrossRefGoogle Scholar
  59. [59]
    Pol, V. G.; Wen, J. G.; Miller, D. J.; Thackeray, M. M. Sonochemical deposition of Sn, SnO2 and Sb on spherical hard carbon electrodes for Li-ion batteries. J. Electrochem. Soc. 2014, 161, A777–A782.CrossRefGoogle Scholar
  60. [60]
    Song, M. K.; Park, S.; Alamgir, F. M.; Cho, J.; Liu, M. L. Nanostructured electrodes for lithium-ion and lithium-air batteries: The latest developments, challenges, and perspectives. Mater. Sci. Eng. R Rep. 2011, 72, 203–252.CrossRefGoogle Scholar
  61. [61]
    Bao, Z. H.; Song, M. K.; Davis, S. C.; Cai, Y.; Liu, M. L.; Sandhage, K. H. High surface area, micro/mesoporous carbon particles with selectable 3-D biogenic morphologies for tailored catalysis, filtration, or adsorption. Energy Environ. Sci. 2011, 4, 3980–3984.CrossRefGoogle Scholar
  62. [62]
    Shi, Q. R.; Cha, Y.; Song, Y.; Lee, J.-I.; Zhu, C. Z.; Li, X. Y.; Song, M. K.; Du, D.; Lin, Y. H. 3D graphene-based hybrid materials: Synthesis and applications in energy storage and conversion. Nanoscale 2016, 8, 15414–15447.CrossRefGoogle Scholar
  63. [63]
    Wei, W.; Wang, Z. H.; Liu, Z.; Liu, Y.; He, L.; Chen, D. Z.; Umar, A.; Guo, L.; Li, J. H. Metal oxide hollow nanostructures: Fabrication and Li storage performance. J. Power Sources 2013, 238, 376–387.CrossRefGoogle Scholar
  64. [64]
    Goriparti, S.; Miele, E.; De Angelis, F.; Di Fabrizio, E.; Zaccaria, R. P.; Capiglia, C. Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power Sources 2014, 257, 421–443.CrossRefGoogle Scholar
  65. [65]
    Li, Y. G.; Wu, Y. Y. Coassembly of graphene oxide and nanowires for large-area nanowire alignment. J. Am. Chem. Soc. 2009, 131, 5851–5857.CrossRefGoogle Scholar
  66. [66]
    Xu, Y. X.; Sheng, K. X.; Li, C.; Shi, G. Q. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 2010, 4, 4324–4330.CrossRefGoogle Scholar
  67. [67]
    Wang, S. Y.; Yu, D. S.; Dai, L. M.; Chang, D. W.; Baek, J. B. Polyelectrolyte-functionalized graphene as metal-free electrocatalysts for oxygen reduction. ACS Nano 2011, 5, 6202–6209.CrossRefGoogle Scholar
  68. [68]
    Zhu, C. Z.; Wang, P.; Wang, L.; Han, L.; Dong, S. J. Facile synthesis of two-dimensional graphene/SnO2/Pt ternary hybrid nanomaterials and their catalytic properties. Nanoscale 2011, 3, 4376–4382.CrossRefGoogle Scholar
  69. [69]
    Tiensuu, V. H.; Ergun, S.; Alexander, L. E. X-ray diffraction from small crystallites. J. Appl. Phys. 1964, 35, 1718–1720.CrossRefGoogle Scholar
  70. [70]
    Lee, S. Y.; Park, K. Y.; Kim, W. S.; Yoon, S.; Hong, S. H.; Kang, K.; Kim, M. Unveiling origin of additional capacity of SnO2 anode in lithium-ion batteries by realistic ex situ TEM analysis. Nano Energy 2016, 19, 234–245.CrossRefGoogle Scholar
  71. [71]
    Liu, L. L.; An, M. Z.; Yang, P. X.; Zhang, J. Q. Superior cycle performance and high reversible capacity of SnO2/graphene composite as an anode material for lithium-ion batteries. Sci. Rep. 2015, 5, 9055.CrossRefGoogle Scholar
  72. [72]
    Wang, X. Y.; Zhou, X. F.; Yao, K.; Zhang, J. G.; Liu, Z. P. A SnO2/graphene composite as a high stability electrode for lithium ion batteries. Carbon 2011, 49, 133–139.CrossRefGoogle Scholar
  73. [73]
    Wang, Z. Y.; Zhang, H.; Li, N.; Shi, Z. J.; Gu, Z. N.; Cao, G. P. Laterally confined graphene nanosheets and graphene/SnO2 composites as high-rate anode materials for lithiumion batteries. Nano Res. 2010, 3, 748–756.CrossRefGoogle Scholar
  74. [74]
    Gu, M.; Kushima, A.; Shao, Y. Y.; Zhang, J. G.; Liu, J.; Browning, N. D.; Li, J.; Wang, C. M. Probing the failure mechanism of SnO2 nanowires for sodium-ion batteries. Nano Lett. 2013, 13, 5203–5211.CrossRefGoogle Scholar
  75. [75]
    Wang, N. N.; Bai, Z. C.; Qian, Y. T.; Yang, J. Double-walled Sb@TiO2−x nanotubes as a superior high-rate and ultralonglifespan anode material for Na-ion and Li-ion batteries. Adv. Mater. 2016, 28, 4126–4133.CrossRefGoogle Scholar
  76. [76]
    Zhang, K.; Hu, Z.; Liu, X.; Tao, Z. L.; Chen, J. FeSe2 microspheres as a high-performance anode material for Na-ion batteries. Adv. Mater. 2015, 27, 3305–3309.CrossRefGoogle Scholar
  77. [77]
    Guo, S. H.; Yu, H. J.; Liu, P.; Ren, Y.; Zhang, T.; Chen, M. W.; Ishida, M.; Zhou, H. S. High-performance symmetric sodium-ion batteries using a new, bipolar O3-type material, Na0.8Ni0.4Ti0.6O2. Energy Environ. Sci. 2015, 8, 1237–1244.CrossRefGoogle Scholar
  78. [78]
    Li, H. S.; Peng, L. L.; Zhu, Y.; Chen, D. H.; Zhang, X. G.; Yu, G. H. An advanced high-energy sodium ion full battery based on nanostructured Na2Ti3O7/VOPO4 layered materials. Energy Environ. Sci. 2016, 9, 3399–3405.CrossRefGoogle Scholar
  79. [79]
    Oehl, N.; Schmuelling, G.; Knipper, M.; Kloepsch, R.; Placke, T.; Kolny-Olesiak, J.; Plaggenborg, T.; Winter, M.; Parisi, J. In situ X-ray diffraction study on the formation of α-Sn in nanocrystalline Sn-based electrodes for lithium-ion batteries. CrystEngComm 2015, 17, 8500–8504.CrossRefGoogle Scholar
  80. [80]
    Lee, J.-I.; Ko, Y.; Shin, M.; Song, H.-K.; Choi, N.-S.; Kim, M. G.; Park, S. High-performance silicon-based multicomponent battery anodes produced via synergistic coupling of multifunctional coating layers. Energy Environ. Sci. 2015, 8, 2075–2084.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Jung-In Lee
    • 1
  • Junhua Song
    • 1
  • Younghwan Cha
    • 1
  • Shaofang Fu
    • 1
  • Chengzhou Zhu
    • 1
  • Xiaolin Li
    • 2
  • Yuehe Lin
    • 1
    • 3
  • Min-Kyu Song
    • 1
  1. 1.School of Mechanical and Materials EngineeringWashington State UniversityPullmanUSA
  2. 2.Energy & Environment DirectoratePacific Northwest National LaboratoryRichlandUSA
  3. 3.Pacific Northwest National LaboratoryRichlandUSA

Personalised recommendations