Nano Research

, Volume 11, Issue 3, pp 1358–1368 | Cite as

Effects of redox-active interlayer anions on the oxygen evolution reactivity of NiFe-layered double hydroxide nanosheets

  • Daojin Zhou
  • Zhao Cai
  • Yongmin Bi
  • Weiliang Tian
  • Ma Luo
  • Qian Zhang
  • Qian Zhang
  • Qixian Xie
  • Jindi Wang
  • Yaping Li
  • Yun Kuang
  • Xue Duan
  • Michal Bajdich
  • Samira SiahrostamiEmail author
  • Xiaoming SunEmail author
Research Article


Nickel-iron layered double hydroxide (NiFe-LDH) nanosheets have shown optimal oxygen evolution reaction (OER) performance; however, the role of the intercalated ions in the OER activity remains unclear. In this work, we show that the activity of the NiFe-LDHs can be tailored by the intercalated anions with different redox potentials. The intercalation of anions with low redox potential (high reducing ability), such as hypophosphites, leads to NiFe-LDHs with low OER overpotential of 240 mV and a small Tafel slope of 36.9 mV/dec, whereas NiFe-LDHs intercalated with anions of high redox potential (low reducing ability), such as fluorion, show a high overpotential of 370 mV and a Tafel slope of 80.8 mV/dec. The OER activity shows a surprising linear correlation with the standard redox potential. Density functional theory calculations and X-ray photoelectron spectroscopy analysis indicate that the intercalated anions alter the electronic structure of metal atoms which exposed at the surface. Anions with low standard redox potential and strong reducing ability transfer more electrons to the hydroxide layers. This increases the electron density of the surface metal sites and stabilizes their high-valence states, whose formation is known as the critical step prior to the OER process.


oxygen evolution reaction layered double hydroxide intercalated anions electronic structure 



This work was supported by the National Natural Science Foundation of China (NSFC), the National Key Research and Development Project (Nos. 2016YFF0204402 and 2016YFC0801302), the Program for Changjiang Scholars, and innovative Research Team in the University, and the Fundamental Research Funds for the Central Universities, and the long term subsidy mechanism from the Ministry of Finance and the Ministry of Education of China. S.S. gratefully acknowledges Villum Foundation.

Supplementary material

12274_2017_1750_MOESM1_ESM.pdf (5.9 mb)
Effects of redox-active interlayer anions on the oxygen evolution reactivity of NiFe-layered double hydroxide nanosheets


  1. [1]
    Wang, H. F.; Tang, C.; Zhang, Q. Towards superior oxygen evolution through graphene barriers between metal substrates and hydroxide catalysts. J. Mater. Chem. A2015, 3, 16183–16189.Google Scholar
  2. [2]
    Cheng, F. Y.; Shen, J.; Peng, B.; Pan, Y. D.; Tao, Z. L.; Chen, J. Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts. Nat. Chem.2011, 3, 79–84.Google Scholar
  3. [3]
    Han, N.; Zhao, F. P.; Li, Y. G. Ultrathin nickel-iron layered double hydroxide nanosheets intercalated with molybdate anions for electrocatalytic water oxidation. J. Mater. Chem. A2015, 3, 16348–16353.Google Scholar
  4. [4]
    Spöri, C.; Kwan, J. T. H.; Bonakdarpour, A.; Wilkinson, D. P.; Strasser, P. The stability challenges of oxygen evolving catalysts: Towards a common fundamental understanding and mitigation of catalyst degradation. Angew. Chem., Int. Ed.2017, 56, 5994–6021.Google Scholar
  5. [5]
    Zhao, J. W.; Chen, J. L.; Xu, S. M.; Shao, M. F.; Zhang, Q.; Wei, F.; Ma, J.; Wei, M.; Evans, D. G.; Duan, X. Hierarchical NiMn layered double hydroxide/carbon nanotubes architecture with superb energy density for flexible supercapacitors. Adv. Funct. Mater.2014, 24, 2938–2946.Google Scholar
  6. [6]
    Zhao, M. Q.; Zhang, Q.; Huang, J. Q.; Wei, F. Hierarchical nanocomposites derived from nanocarbons and layered double hydroxides-properties, synthesis, and applications. Adv. Funct. Mater.2012, 22, 675–694.Google Scholar
  7. [7]
    Burke, M. S.; Enman, L. J.; Batchellor, A. S.; Zou, S. H.; Boettcher, S. W. Oxygen evolution reaction electrocatalysis on transition metal oxides and (Oxy)hydroxides: Activity trends and design principles. Chem. Mater.2015, 27, 7549–7558.Google Scholar
  8. [8]
    Reier, T.; Nong, H. N.; Teschner, D.; Schlögl, R.; Strasser, P. Electrocatalytic oxygen evolution reaction in acidic environments-reaction mechanisms and catalysts. Adv. Energy Mater.2017, 7, 1601275.Google Scholar
  9. [9]
    Dionigi, F.; Strasser, P. NiFe-based (Oxy)hydroxide catalysts for oxygen evolution reaction in non-acidic electrolytes. Adv. Energy Mater.2016, 6, 1600621.Google Scholar
  10. [10]
    Lee, Y.; Suntivich, J.; May, K. J.; Perry, E. E.; Shao-Horn, Y. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett.2012, 3, 399–404.Google Scholar
  11. [11]
    Diaz-Morales, O.; Raaijman, S.; Kortlever, R.; Kooyman, P. J.; Wezendonk, T.; Gascon, J.; Fu, W. T.; Koper, M. T. M. Iridium-based double perovskites for efficient water oxidation in acid media. Nat. Commun.2016, 7, 12363.Google Scholar
  12. [12]
    Gong, M.; Dai, H. J. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res.2015, 8, 23–39.Google Scholar
  13. [13]
    Diaz-Morales, O.; Ledezma-Yanez, I.; Koper, M. T. M.; Calle-Vallejo, F. Guidelines for the rational design of Ni-based double hydroxide electrocatalysts for the oxygen evolution reaction. ACS Catal.2015, 5, 5380–5387.Google Scholar
  14. [14]
    Reier, T.; Oezaslan, M.; Strasser, P. Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: A comparative study of nanoparticles and bulk materials. ACS Catal.2012, 2, 1765–1772.Google Scholar
  15. [15]
    Cheng, Y.; Jiang, S. P. Advances in electrocatalysts for oxygen evolution reaction of water electrolysis-from metal oxides to carbon nanotubes. Prog. Nat. Sci.2015, 25, 545–553.Google Scholar
  16. [16]
    Tian, G. L.; Zhao, M. Q.; Yu, D. S.; Kong, X. Y.; Huang, J. Q.; Zhang, Q.; Wei, F. Graphene hybrids: Nitrogen-doped graphene/carbon nanotube hybrids: In situ formation on bifunctional catalysts and their superior electrocatalytic activity for oxygen evolution/reduction reaction. Small2014, 10, 2113.Google Scholar
  17. [17]
    Takeguchi, T.; Yamanaka, T.; Takahashi, H.; Watanabe, H.; Kuroki, T.; Nakanishi, H.; Orikasa, Y.; Uchimoto, Y.; Takano, H.; Ohguri, N. et al. Layered perovskite oxide: A reversible air electrode for oxygen evolution/reduction in rechargeable metal-air batteries. J. Am. Chem. Soc.2013, 135, 11125–11130.Google Scholar
  18. [18]
    Vojvodic, A.; Nørskov, J. K. Optimizing perovskites for the water-splitting reaction. Science2011, 334, 1355–1356.Google Scholar
  19. [19]
    Grimaud, A.; May, K. J.; Carlton, C. E.; Lee, Y. L.; Risch, M.; Hong, W. T.; Zhou, J. G.; Shao-Horn, Y. Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution. Nat. Commun.2013, 4, 2439.Google Scholar
  20. [20]
    Stern, L. A.; Feng, L. G.; Song, F.; Hu, X. L. Ni2P as a Janus catalyst for water splitting: The oxygen evolution activity of Ni2P nanoparticles. Energy Environ. Sci.2015, 8, 2347–2351.Google Scholar
  21. [21]
    Chemelewski, W. D.; Lee, H. C.; Lin, J. F.; Bard, A. J.; Mullins, C. B. Amorphous FeOOH oxygen evolution reaction catalyst for photoelectrochemical water splitting. J. Am. Chem. Soc.2014, 136, 2843–2850.Google Scholar
  22. [22]
    Rosen, J.; Hutchings, G. S.; Jiao, F. Ordered mesoporous cobalt oxide as highly efficient oxygen evolution catalyst. J. Am. Chem. Soc.2013, 135, 4516–4521.Google Scholar
  23. [23]
    Jahan, M.; Liu, Z. L.; Loh, K. P. A graphene oxide and copper-centered metal organic framework composite as a tri-functional catalyst for HER, OER, and ORR. Adv. Funct. Mater.2013, 23, 5363–5372.Google Scholar
  24. [24]
    Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science2011, 334, 1383–1385.Google Scholar
  25. [25]
    Galizzioli, D.; Tantardini, F.; Trasatti, S. Ruthenium dioxide: A new electrode material. I. Behaviour in acid solutions of inert electrolytes. J. Appl. Electrochem.1974, 4, 57–67.Google Scholar
  26. [26]
    Zhu, X. L.; Tang, C.; Wang, H. F.; Zhang, Q.; Yang, C. H.; Wei, F. Dual-sized NiFe layered double hydroxides in situ grown on oxygen-decorated self-dispersal nanocarbon as enhanced water oxidation catalysts. J. Mater. Chem. A2015, 3, 24540–24546.Google Scholar
  27. [27]
    Long, X.; Li, J. K.; Xiao, S.; Yan, K. Y.; Wang, Z. L.; Chen, H. N.; Yang, S. H. A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction. Angew. Chem., Int. Ed.2014, 53, 7584–7588.Google Scholar
  28. [28]
    Long, X.; Wang, Z. L.; Xiao, S.; An, Y. M.; Yang, S. H. Transition metal based layered double hydroxides tailored for energy conversion and storage. Mater. Today2016, 19, 213–226.Google Scholar
  29. [29]
    Gong, M.; Li, Y. G.; Wang, H. L.; Liang, Y. Y.; Wu, J. Z.; Zhou, J. G.; Wang, J.; Regier, T.; Wei, F.; Dai, H. J. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc.2013, 135, 8452–8455.Google Scholar
  30. [30]
    Burke, M. S.; Zou, S. H.; Enman, L. J.; Kellon, J. E.; Gabor, C. A.; Pledger, E.; Boettcher, S. W. Revised oxygen evolution reaction activity trends for first-row transition-metal (Oxy)hydroxides in alkaline media. J. Phys. Chem. Lett.2015, 6, 3737–3742.Google Scholar
  31. [31]
    Song, F.; Hu, X. L. Ultrathin cobalt-manganese layered double hydroxide is an efficient oxygen evolution catalyst. J. Am. Chem. Soc.2014, 136, 16481–16484.Google Scholar
  32. [32]
    Zhao, Y. F.; Wei, M.; Lu, J.; Wang, Z. L.; Duan, X. Biotemplated hierarchical nanostructure of layered double hydroxides with improved photocatalysis performance. ACS Nano2009, 3, 4009–4016.Google Scholar
  33. [33]
    Yao, H. B.; Tan, Z. H.; Fang, H. Y.; Yu, S. H. Artificial nacre-like bionanocomposite films from the self-assembly of chitosan-montmorillonite hybrid building blocks. Angew. Chem., Int. Ed.2010, 49, 10127–10131.Google Scholar
  34. [34]
    Han, Y. F.; Liu, Z. H.; Yang, Z. P.; Wang, Z. L.; Tang, X. H.; Wang, T.; Fan, L. H.; Ooi, K. Preparation of Ni2+−Fe3+ layered double hydroxide material with high crystallinity and well-defined hexagonal shapes. Chem. Mater.2008, 20, 360–363.Google Scholar
  35. [35]
    Louie, M. W.; Bell, A. T. An investigation of thin-film Ni–Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc.2013, 135, 12329–12337.Google Scholar
  36. [36]
    Chen, J. Y. C.; Miller, J. T.; Gerken, J. B.; Stahl, S. S. Inverse spinel NiFeAlO4 as a highly active oxygen evolution electrocatalyst: Promotion of activity by a redox-inert metal ion. Energy Environ. Sci.2014, 7, 1382–1386.Google Scholar
  37. [37]
    Tang, C.; Wang, H. S.; Wang, H. F.; Zhang, Q.; Tian, G. L.; Nie, J. Q.; Wei, F. Spatially confined hybridization of nanometer-sized NiFe hydroxides into nitrogen-doped graphene frameworks leading to superior oxygen evolution reactivity. Adv. Mater.2015, 27, 4516–4522.Google Scholar
  38. [38]
    Chen, S.; Duan, J. J.; Jaroniec, M.; Qiao, S. Z. Three-dimensional N-doped graphene hydrogel/NiCo double hydroxide electrocatalysts for highly efficient oxygen evolution. Angew. Chem., Int. Ed.2013, 52, 13567–13570.Google Scholar
  39. [39]
    Ma, W.; Ma, R. Z.; Wang, C. X.; Liang, J. B.; Liu, X. H.; Zhou, K. C.; Sasaki, T. A superlattice of alternately stacked Ni-Fe hydroxide nanosheets and graphene for efficient splitting of water. ACS Nano2015, 9, 1977–1984.Google Scholar
  40. [40]
    Song, F.; Hu, X. L. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun.2014, 5, 4477.Google Scholar
  41. [41]
    Wang, L.; Wang, D.; Dong, X. Y.; Zhang, Z. J.; Pei, X. F.; Chen, X. J.; Chen, B.; Jin, J. Layered assembly of graphene oxide and Co-Al layered double hydroxide nanosheets as electrode materials for supercapacitors. Chem. Commun.2011, 47, 3556–3558.Google Scholar
  42. [42]
    Oliver-Tolentino, M. A.; Vázquez-Samperio, J.; Manzo-Robledo, A.; de Guadalupe González-Huerta, R.; Flores-Moreno, J. L.; Ramírez-Rosales, D.; Guzmán-Vargas, A. An approach to understanding the electrocatalytic activity enhancement by superexchange interaction toward OER in alkaline media of Ni–Fe LDH. J. Phys. Chem. C2014, 118, 22432–22438.Google Scholar
  43. [43]
    Wang, Q.; O’Hare, D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev.2012, 112, 4124–4155.Google Scholar
  44. [44]
    Hunter, B. M.; Hieringer, W.; Winkler, J. R.; Gray, H. B.; Müller, A. M. Effect of interlayer anions on [NiFe]-LDH nanosheet water oxidation activity. Energy Environ. Sci.2016, 9, 1734–1743.Google Scholar
  45. [45]
    Luo, M.; Cai, Z.; Wang, C.; Bi, Y. M.; Qian, L.; Hao, Y. C.; Li, L.; Kuang, Y.; Li, Y. P.; Lei, X. D. et al. Phosphorus oxoanion-intercalated layered double hydroxides for high-performance oxygen evolution. Nano Res.2017, 10, 1732–1739.Google Scholar
  46. [46]
    Brandán, S. A. Theoretical study of the structure and vibrational spectra of chromyl perchlorate, CrO2(ClO4)2. J. Mol. Struct.2009, 908, 19–25.Google Scholar
  47. [47]
    Hunt, J. M.; Wisherd, M. P.; Bonham, L. C. Infrared absorption spectra of minerals and other inorganic compounds. Anal. Chem.1950, 22, 1478–1497.Google Scholar
  48. [48]
    Miller, F. A.; Wilkins, C. H. Infrared spectra and characteristic frequencies of inorganic ions. Anal. Chem.1952, 24, 1253–1294.Google Scholar
  49. [49]
    Institute of Inorganic Chemistry of Science and Engineering University of Dalian. Inorganic Chemistry; 4th ed. Higher Education Press: Beijing, 2001.Google Scholar
  50. [50]
    Wagman, D. D.; William, H. E.; Parker, V. B.; HandHalow, R.; Schumm, I.; Bailey, S. M.; Churney, K. L.; Nuttall, R. L. The NBS tables of chemical thermodynamic properties: Selected values for inorganic and C1 and C2 organic substances in SI units; American Chemical Society, American Institute of Physics for the National Bureau of Standards: New York, 1982.Google Scholar
  51. [51]
    Lu, Z. Y.; Qian, L.; Tian, Y.; Li, Y. P.; Sun, X. M.; Duan, X. Ternary NiFeMn layered double hydroxides as highly-efficient oxygen evolution catalysts. Chem. Commun.2016, 52, 908–911.Google Scholar
  52. [52]
    Batchellor, A. S.; Boettcher, S. W. Pulse-electrodeposited Ni–Fe (Oxy)hydroxide oxygen evolution electrocatalysts with high geometric and intrinsic activities at large mass loadings. ACS Catal.2015, 5, 6680–6689.Google Scholar
  53. [53]
    McCrory, C. C. L.; Jung, S.; Ferrer, I. M.; Chatman, S. M.; Peters, J. C.; Jaramillo, T. F. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc.2015, 137, 4347–4357.Google Scholar
  54. [54]
    Stevens, M. B.; Enman, L. J.; Batchellor, A. S.; Cosby, M. R.; Vise, A. E.; Trang, C. D. M.; Boettcher, S. W. Measurement techniques for the study of thin film heterogeneous water oxidation electrocatalysts. Chem. Mater.2017, 29, 120–140.Google Scholar
  55. [55]
    Laubach, S.; Laubach, S.; Schmidt, P. C.; Ensling, D.; Schmid, S.; Jaegermann, W.; Thißen, A.; Nikolowski, K.; Ehrenberg, H. Changes in the crystal and electronic structure of LiCoO2 and LiNiO2 upon Li intercalation and de-intercalation. Phys. Chem. Chem. Phys.2009, 11, 3278–3289.Google Scholar
  56. [56]
    Lu, Z. Y.; Wang, H. T.; Kong, D. S.; Yan, K.; Hsu, P. C.; Zheng, G. Y.; Yao, H. B.; Liang, Z.; Sun, X. M.; Cui, Y. Electrochemical tuning of layered lithium transition metal oxides for improvement of oxygen evolution reaction. Nat. Commun.2014, 5, 4345.Google Scholar
  57. [57]
    Rossmeisl, J.; Dimitrievski, K.; Siegbahn, P.; Nørskov, J. K. Comparing electrochemical and biological water splitting. J. Phys. Chem. C2007, 111, 18821–18823.Google Scholar
  58. [58]
    Valdés, Á.; Qu, Z. W.; Kroes, G. J.; Rossmeisl, J.; Nørskov, J. K. Oxidation and photo-oxidation of water on TiO2 surface. J. Phys. Chem. C2008, 112, 9872–9879.Google Scholar
  59. [59]
    Yeo, B. S.; Bell, A. T. Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J. Am. Chem. Soc.2011, 133, 5587–5593.Google Scholar
  60. [60]
    Lu, X. Y.; Zhao, C. Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities. Nat. Commun.2015, 6, 6616.Google Scholar
  61. [61]
    Trotochaud, L.; Young, S. L.; Ranney, J. K.; Boettcher, S. W. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation. J. Am. Chem. Soc.2014, 136, 6744–6753.Google Scholar
  62. [62]
    Friebel, D.; Louie, M. W.; Bajdich, M.; Sanwald, K. E.; Cai, Y.; Wise, A. M.; Cheng, M. J.; Sokaras, D.; Weng, T. C.; Alonso-Mori, R. et al. Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc.2015, 137, 1305–1313.Google Scholar
  63. [63]
    Liao, P. L.; Keith, J. A.; Carter, E. A. Water oxidation on pure and doped hematite (0001) surfaces: Prediction of Co and Ni as effective dopants for electrocatalysis. J. Am. Chem. Soc.2012, 134, 13296–13309.Google Scholar
  64. [64]
    Lu, Z. Y.; Xu, W. W.; Zhu, W.; Yang, Q.; Lei, X. D.; Liu, J. F.; Li, Y. P.; Sun, X. M.; Duan, X. Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction. Chem. Commun.2014, 50, 6479–6482.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  • Daojin Zhou
    • 1
  • Zhao Cai
    • 1
  • Yongmin Bi
    • 1
  • Weiliang Tian
    • 1
    • 2
  • Ma Luo
    • 1
  • Qian Zhang
    • 1
  • Qian Zhang
    • 1
  • Qixian Xie
    • 1
  • Jindi Wang
    • 1
  • Yaping Li
    • 1
  • Yun Kuang
    • 1
  • Xue Duan
    • 1
  • Michal Bajdich
    • 3
  • Samira Siahrostami
    • 4
    Email author
  • Xiaoming Sun
    • 1
    Email author
  1. 1.State Key Laboratory of Chemical Resource Engineering, College of Energy, Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijingChina
  2. 2.Key Laboratory of Chemical Engineering in South Xinjiang, College of Life ScienceTarim UniversityAlarChina
  3. 3.SUNCAT Center for Interface Science and CatalysisSLAC National Accelerator LaboratoryMenlo ParkUSA
  4. 4.SUNCAT Center for Interface Science and Catalysis, Department of Chemical EngineeringStanford UniversityStanfordUSA

Personalised recommendations