Hierarchical CoNiSe2 nano-architecture as a high-performance electrocatalyst for water splitting


Hierarchical nano-architectures comprised of ultrathin ternary selenide (CoNiSe2) nanorods were directly grown on nickel foam (NF). The integrated CoNiSe2/NF functions as a robust electrocatalyst with an extremely high activity and stability for emerging renewable energy technologies, and electrochemical oxygen and hydrogen evolution reactions (OER and HER, respectively). The overpotentials required to deliver a current density of 100 mA·cm−2 are as low as 307 and 170 mV for the OER and HER, respectively; therefore, the obtained CoNiSe2 is among the most promising earth-abundant catalysts for water splitting. Furthermore, our synthetic sample validates a two-electrode electrolyzer for reducing the cell voltage in the full water splitting reaction to 1.591 V to achieve a current density of 10 mA·cm−2, which offers a novel, inexpensive, integrated selenide/NF electrode for electrocatalytic applications.

This is a preview of subscription content, log in to check access.


  1. [1]

    Dau, H.; Limberg, C.; Reier, T.; Risch, M.; Roggan, S.; Strasser, P. The mechanism of water oxidation: From electrolysis via homogeneous to biological catalysis. ChemCatChem 2010, 2, 724–761.

    Article  Google Scholar 

  2. [2]

    Fabbri, E.; Habereder, A.; Waltar, K.; Kötz, R.; Schmidt, T. J. Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction. Catal. Sci. Technol. 2014, 4, 3800–3821.

    Article  Google Scholar 

  3. [3]

    Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.

    Article  Google Scholar 

  4. [4]

    Gagliardi, C. J.; Vannucci, A. K.; Concepcion, J. J.; Chen, Z. F.; Meyer, T. J. The role of proton coupled electron transfer in water oxidation. Energy Environ. Sci. 2012, 5, 7704–7717.

    Article  Google Scholar 

  5. [5]

    Kong, D. S.; Cha, J. J.; Wang, H. T.; Lee, H. R.; Cui, Y. First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy Environ. Sci. 2013, 6, 3553–3558.

    Article  Google Scholar 

  6. [6]

    Gao, M. R.; Xu, Y. F.; Jiang, J.; Yu, S. H. Nanostructured metal chalcogenides: Synthesis, modification, and applications in energy conversion and storage devices. Chem. Soc. Rev. 2013, 42, 2986–3017.

    Article  Google Scholar 

  7. [7]

    Faber, M. S.; Jin, S. Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ. Sci. 2014, 7, 3519–3542.

    Article  Google Scholar 

  8. [8]

    Kuang, M.; Zheng, G. Nanostructured bifunctional redox electrocatalysts. Small 2016, 12, 5656–5675.

    Article  Google Scholar 

  9. [9]

    Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang, N.; Xu, Y. J.; Chen, H. M. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337–365.

    Article  Google Scholar 

  10. [10]

    Anantharaj, S.; Ede, S. R.; Sakthikumar, K.; Karthick, K.; Mishra, S.; Kundu, S. Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: A review. ACS Catal. 2016, 6, 8069–8097.

    Article  Google Scholar 

  11. [11]

    Liu, Y. C.; Li, Y.; Kang, H. Y.; Jin, T.; Jiao, L. F. Design, synthesis, and energy-related applications of metal sulfides. Mater. Horiz. 2016, 3, 402–421.

    Article  Google Scholar 

  12. [12]

    Sun, Y. J.; Liu, C.; Grauer, D. C.; Yano, J.; Long, J. R.; Yang, P. D.; Chang, C. J. Electrodeposited cobalt-sulfide catalyst for electrochemical and photoelectrochemical hydrogen generation from water. J. Am. Chem. Soc. 2013, 135, 17699–17702.

    Article  Google Scholar 

  13. [13]

    Faber, M. S.; Dziedzic, R.; Lukowski, M. A.; Kaiser, N. S.; Ding, Q.; Jin, S. High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures. J. Am. Chem. Soc. 2014, 136, 10053–10061.

    Article  Google Scholar 

  14. [14]

    Kong, D. S.; Wang, H. T.; Lu, Z. Y.; Cui, Y. CoSe2 nanoparticles grown on carbon fiber paper: An efficient and stable electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 2014, 136, 4897–4900.

    Article  Google Scholar 

  15. [15]

    Gao, M. R.; Cao, X.; Gao, Q.; Xu, Y. F.; Zheng, Y. R.; Jiang, J.; Yu, S. H. Nitrogen-doped graphene supported CoSe2 nanobelt composite catalyst for efficient water oxidation. ACS Nano 2014, 8, 3970–3978.

    Article  Google Scholar 

  16. [16]

    Liu, Y. W.; Cheng, H.; Lyu, M.; Fan, S. J.; Liu, Q. H.; Zhang, W. S.; Zhi, Y. D.; Wang, C. M.; Xiao, C.; Wei, S. Q. et al. Low overpotential in vacancy-rich ultrathin CoSe2 nanosheets for water oxidation. J. Am. Chem. Soc. 2014, 136, 15670–15675.

    Article  Google Scholar 

  17. [17]

    Zheng, Y. R.; Gao, M. R.; Gao, Q.; Li, H. H.; Xu, J.; Wu, Z. Y.; Yu, S. H. An efficient CeO2/CoSe2 nanobelt composite for electrochemical water oxidation. Small 2015, 11, 182–188.

    Article  Google Scholar 

  18. [18]

    Xiao, H. Q.; Wang, S. T.; Wang, C.; Li, Y. Y.; Zhang, H. R.; Wang, Z. J.; Zhou, Y.; An, C. H.; Zhang, J. Lamellar structured CoSe2 nanosheets directly arrayed on Ti plate as an efficient electrochemical catalyst for hydrogen evolution. Electrochim. Acta 2016, 217, 156–162.

    Article  Google Scholar 

  19. [19]

    Lee, C. P.; Chen, W. F.; Billo, T.; Lin, Y. G.; Fu, F. Y.; Samireddi, S.; Lee, C. H.; Hwang, J. S.; Chen, K. H.; Chen, L. C. Beaded stream-like CoSe2 nanoneedle array for efficient hydrogen evolution electrocatalysis. J. Mater. Chem. A 2016, 4, 4553–4561.

    Article  Google Scholar 

  20. [20]

    Li, H. M.; Qian, X.; Zhu, C. L.; Jiang, X. C.; Shao, L.; Hou, L. X. Template synthesis of CoSe2/Co3Se4 nanotubes: Tuning of their crystal structures for photovoltaics and hydrogen evolution in alkaline medium. J. Mater. Chem. A 2017, 5, 4513–4526.

    Article  Google Scholar 

  21. [21]

    Zhao, X.; Zhang, H. T.; Yan, Y.; Cao, J. H.; Li, X. Q.; Zhou, S. M.; Peng, Z. M.; Zeng, J. Engineering the electrical conductivity of lamellar silver-doped cobalt(II) selenide nanobelts for enhanced oxygen evolution. Angew. Chem., Int. Ed. 2017, 56, 328–332.

    Article  Google Scholar 

  22. [22]

    Wang, K.; Zhou, C. J.; Xi, D.; Shi, Z. Q.; He, C.; Xia, H. Y.; Liu, G. W.; Qiao, G. J. Component-controllable synthesis of Co(SxSe1–x)2 nanowires supported by carbon fiber paper as high-performance electrode for hydrogen evolution reaction. Nano Energy 2015, 18, 1–11.

    Article  Google Scholar 

  23. [23]

    Cabán-Acevedo, M.; Stone, M. L.; Schmidt, J. R.; Thomas, J. G.; Ding, Q.; Chang, H. C.; Tsai, M. L.; He, J. H.; Jin, S. Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide. Nat. Mater. 2015, 14, 1245–1251.

    Article  Google Scholar 

  24. [24]

    Tang, C.; Pu, Z. H.; Liu, Q.; Asiri, A. M.; Sun, X. P. NiS2 nanosheets array grown on carbon cloth as an efficient 3D hydrogen evolution cathode. Electrochim. Acta 2015, 153, 508–514.

    Article  Google Scholar 

  25. [25]

    Tang, C.; Cheng, N. Y.; Pu, Z. H.; Xing, W.; Sun, X. P. NiSe nanowire film supported on nickel foam: An efficient and stable 3d bifunctional electrode for full water splitting. Angew. Chem., Int. Ed. 2015, 54, 9351–9355.

    Article  Google Scholar 

  26. [26]

    Xu, K.; Ding, H.; Jia, K. C.; Lu, X. L.; Chen, P. Z.; Zhou, T. P.; Cheng, H.; Liu, S.; Wu, C. Z.; Xie, Y. Solution-liquid-solid synthesis of hexagonal nickel selenide nanowire arrays with a nonmetal catalyst. Angew. Chem., Int. Ed. 2016, 55, 1710–1713.

    Article  Google Scholar 

  27. [27]

    Zhou, H. Q.; Wang, Y. M.; He, R.; Yu, F.; Sun, J. Y.; Wang, F.; Lan, Y. C.; Ren, Z. F.; Chen, S. One-step synthesis of self-supported porous NiSe2/Ni hybrid foam: An efficient 3D electrode for hydrogen evolution reaction. Nano Energy 2016, 20, 29–36.

    Article  Google Scholar 

  28. [28]

    Zhou, W. J.; Wu, X. J.; Cao, X. H.; Huang, X.; Tan, C. L.; Tian, J.; Liu, H.; Wang, J. Y.; Zhang, H. Ni3S2 nanorods/Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution. Energy Environ. Sci. 2013, 6, 2921–2924.

    Article  Google Scholar 

  29. [29]

    Feng, L. L.; Yu, G. T.; Wu, Y. Y.; Li, G. D.; Li, H.; Sun, Y. H.; Asefa, T.; Chen, W.; Zou, X. X. High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J. Am. Chem. Soc. 2015, 137, 14023–14026.

    Article  Google Scholar 

  30. [30]

    Long, X.; Li, G. X.; Wang, Z. L.; Zhu, H. Y.; Zhang, T.; Xiao, S.; Guo, W. Y.; Yang, S. H. Metallic iron−nickel sulfide ultrathin nanosheets as a highly active electrocatalyst for hydrogen evolution reaction in acidic media. J. Am. Chem. Soc. 2015, 137, 11900–11903.

    Article  Google Scholar 

  31. [31]

    Peng, Z.; Jia, D. S.; Al-Enizi, A. M.; Elzatahry, A. A.; Zheng, G. F. From water oxidation to reduction: Homologous Ni–Co based nanowires as complementary water splitting electrocatalysts. Adv. Energy Mater. 2015, 5, 1402031.

    Article  Google Scholar 

  32. [32]

    Liu, D. N.; Lu, Q.; Luo, Y. L.; Sun, X. P.; Asiri, A. M. NiCo2S4 nanowires array as an efficient bifunctional electrocatalyst for full water splitting with superior activity. Nanoscale 2015, 7, 15122–15126.

    Article  Google Scholar 

  33. [33]

    Sivanantham, A.; Ganesan, P.; Shanmugam, S. Hierarchical NiCo2S4 nanowire arrays supported on Ni foam: An efficient and durable bifunctional electrocatalyst for oxygen and hydrogen evolution reactions. Adv. Funct. Mater. 2016, 26, 4661–4672.

    Article  Google Scholar 

  34. [34]

    Xu, X.; Song, F.; Hu, X. L. A nickel iron diselenide-derived efficient oxygen-evolution catalyst. Nat. Commun. 2016, 7, 12324.

    Article  Google Scholar 

  35. [35]

    Wang, Z. Y.; Li, J. T.; Tian, X. C.; Wang, X. P.; Yu, Y.; Owusu, K. A.; He, L.; Mai, L. Q. Porous nickel−iron selenide nanosheets as highly efficient electrocatalysts for oxygen evolution reaction. ACS Appl. Mater. Interfaces 2016, 8, 19386–19392.

    Article  Google Scholar 

  36. [36]

    Xia, C.; Jiang, Q.; Zhao, C.; Hedhili, M. N.; Alshareef, H. N. Selenide-based electrocatalysts and scaffolds for water oxidation applications. Adv. Mater. 2016, 28, 77–85.

    Article  Google Scholar 

  37. [37]

    Zhang, Z.; Liu, Y. D.; Ren, L.; Zhang, H.; Huang, Z. Y.; Qi, X.; Wei, X. L.; Zhong, J. X. Three-dimensional-networked Ni-Co-Se nanosheet/nanowire arrays on carbon cloth: A flexible electrode for efficient hydrogen evolution. Electrochim. Acta 2016, 200, 142–151.

    Article  Google Scholar 

  38. [38]

    Liu, T. T.; Asiri, A. M.; Sun, X. P. Electrodeposited Codoped NiSe2 nanoparticles film: A good electrocatalyst for efficient water splitting. Nanoscale 2016, 8, 3911–3915.

    Article  Google Scholar 

  39. [39]

    Merki, D.; Vrubel, H.; Rovelli, L.; Fierro, S.; Hu, X. L. Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution. Chem. Sci. 2012, 3, 2515–2525.

    Article  Google Scholar 

  40. [40]

    Zhao, Y.; Nakamura, R.; Kamiya, K.; Nakanishi, S.; Hashimoto, K. Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation. Nat. Commun. 2013, 4, 2390.

    Article  Google Scholar 

  41. [41]

    Lee, Y.; Suntivich, J.; May, K. J.; Perry, E. E.; Shao-Horn, Y. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 2012, 3, 399–404.

    Article  Google Scholar 

  42. [42]

    Jiang, N.; You, B.; Sheng, M. L.; Sun, Y. J. Electrodeposited cobalt-phosphorous-derived films as competent bifunctional catalysts for overall water splitting. Angew. Chem., Int. Ed. 2015, 54, 6251–6254.

    Article  Google Scholar 

  43. [43]

    Kibsgaard, J.; Tsai, C.; Chan, K.; Benck, J. D.; Nørskov, J. K.; Abild-Pedersen, F.; Jaramillo, T. F. Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends. Energy Environ. Sci. 2015, 8, 3022–3029.

    Article  Google Scholar 

Download references


This work was financially supported by the National Natural Science Foundation of China (NSFC) (No. 21371097) and the Key University Science Research Project of Jiangsu Province (No. 16KJA150004).

Author information



Corresponding author

Correspondence to Yiwei Tan.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Tan, Y. Hierarchical CoNiSe2 nano-architecture as a high-performance electrocatalyst for water splitting. Nano Res. 11, 1331–1344 (2018). https://doi.org/10.1007/s12274-017-1748-3

Download citation


  • bifunctional catalysts
  • electrocatalysis
  • nanostructures
  • ternary selenide
  • water splitting