Nano Research

, Volume 11, Issue 3, pp 1193–1203 | Cite as

Aqueous and mechanical exfoliation, unique properties, and theoretical understanding of MoO3 nanosheets made from free-standing α-MoO3 crystals: Raman mode softening and absorption edge blue shift

  • Hongfei LiuEmail author
  • Yongqing Cai
  • Mingyong Han
  • Shifeng Guo
  • Ming Lin
  • Meng Zhao
  • Yongwei Zhang
  • Dongzhi Chi
Research Article


Crystalline α-MoO3 belts consisting of nanosheets stacked along their [010] axes were synthesized via thermal vapor transport of MoO3 powders at elevated temperatures. The MoO3 belts were millimeters in length along their [001] axes and tens to hundreds of micrometers in width along their [100] axes. Mechanical and aqueous exfoliations of the belts to form two-dimensional (2D) nanosheets were processed via the scotch-tape and bovine serum albumin (BSA) assisted methods, respectively. Upon scotch-tape exfoliation, the Raman features of MoO3 exhibited monotonic decreases in intensity as the thickness was gradually fell to approach that of a 2D nanosheet. Most Raman features eventually disappeared when a monolayer nanosheet was produced, except for the Mo–O–Mo stretching mode (Ag) at ~818 cm−1, which was accompanied by mode-softening of up to 5 cm−1. This mode softening, hitherto not reported for 2D α-MoO3 nanosheets, can be attributed to lattice relaxations that are validated here via theoretical density functional perturbation theory calculations. The BSA-assisted exfoliation products exhibited a blueshift in the α-MoO3 nanosheet absorption edge; they also revealed an absorption peak at 3.98 eV that can be attributed to their intrinsic exciton absorptions. These observations, together with the facile synthesis of high-purity α-MoO3 crystals, illuminate the possibility of further 2D α-MoO3 nanosheet production and lattice dynamic studies.


α-MoO3 two-dimensional materials exfoliations lattice vibrational dynamics micro-Raman scattering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to acknowledge B. Li for his setting-up of the tube-furnace and Coryl J. J Lee for collecting the SEM/EDX/XRD data. This research is supported by A*STAR Science and Engineering Research Council Pharos 2D Program (SERC Grant No. 152-70-00012).

Supplementary material

12274_2017_1733_MOESM1_ESM.pdf (1.4 mb)
Aqueous and mechanical exfoliation, unique properties, and theoretical understanding of MoO3 nanosheets made from free-standing α-MoO3 crystals: Raman mode softening and absorption edge blue shift


  1. [1]
    Gai, P. L. Dynamic studies of metal oxide catalysts: MoO3. Phil. Mag. A 1981, 43, 841–855.CrossRefGoogle Scholar
  2. [2]
    Barber, S.; Booth, J.; Pyke, D. R.; Reid, R.; Tilley, R. J. D. The influence of crystallographic shear planes on the behavior of molybdenum-tungsten oxide catalysts for the selective oxidation of propene. J. Catal. 1982, 77, 180–191.CrossRefGoogle Scholar
  3. [3]
    Li, Z. C.; Li, Y.; Zhan, E. S.; Ta, N.; Shen, W. J. Morphologycontrolled synthesis of α-MoO3 nanomaterials for ethanol oxidation. J. Mater. Chem. A 2013, 1, 15370–15376.CrossRefGoogle Scholar
  4. [4]
    Balendhran, S.; Walia, S.; Nili, H.; Ou, J. Z.; Zhuiykov, S.; Kaner, R. B.; Sriram, S.; Bhaskaran, M.; Kalantar-zadeh, K. Two-dimensional molybdenum trioxide and dichalcogenides. Adv. Funct. Mater. 2013, 23, 3952–3970.CrossRefGoogle Scholar
  5. [5]
    Zhuiykov, S. Nanostructured Semiconductor Oxides for the Next Generation of Electronics and Functional Devices; Woodhead Publishing: Cambridge, 2014.Google Scholar
  6. [6]
    Wang, D.; Li, J. N.; Zhou, Y.; Xu, D. H.; Xiong, X.; Peng, R. W.; Wang, M. Van der Waals epitaxy of ultrathin α-MoO3 sheets on mica substrate with single-unit-cell thickness. Appl. Phys. Lett. 2016, 108, 053107.CrossRefGoogle Scholar
  7. [7]
    Yano, T.; Yoshida, K.; Hayamizu, Y.; Hayashi, T.; Ohuchi, F.; Hara, M. Probing edge-activated resonant Raman scattering from mechanically exfoliated 2D MoO3 nanolayers. 2D Mater. 2015, 2, 035004.CrossRefGoogle Scholar
  8. [8]
    Liu, H. F.; Wong, S. L.; Chi, D. Z. CVD growth of MoS2-based two-dimensional materials. Chem. Vap. Deposition 2015, 21, 241–259.CrossRefGoogle Scholar
  9. [9]
    Lajaunie, L.; Boucher, F.; Dessapt, R.; Moreau, P. Strong anisotropic influence of local-field effects on the dielectric response of α-MoO3. Phys. Rev. B 2013, 88, 115141.CrossRefGoogle Scholar
  10. [10]
    Kalantar-zadeh, K.; Tang, J. S.; Wang, M. S.; Wang, K. L.; Shailos, A.; Galatsis, K.; Kojima, R.; Strong, V.; Lech, A.; Wlodarski, W. et al. Synthesis of nanometre-thick MoO3 sheets. Nanoscale 2010, 2, 429–433.CrossRefGoogle Scholar
  11. [11]
    Illyaskutty, N.; Sreedhar, S.; Kumar, G. S.; Kohler, H.; Schwotzer, M.; Natzeck, C.; Pillai, V. P. M. Alteration of architecture of MoO3 nanostructures on arbitrary substrates: Growth kinetics, spectroscopic and gas sensing properties. Nanoscale 2014, 6, 13882–13894.CrossRefGoogle Scholar
  12. [12]
    Song, L. X.; Xia, J.; Dang, Z.; Yang, J.; Wang, L. B.; Chen, J. Formation, structure and physical properties of a series of α-MoO3 nanocrystals: From 3D to 1D and 2D. CrystEngComm 2012, 14, 2675–2682.CrossRefGoogle Scholar
  13. [13]
    Pukird, S.; Chaiyo, P.; Thumthan, O.; Sumran, S.; Chamninok, P.; Min, B. K.; Kim, S. J.; An, K. S. Synthesis and characterization of uniformly-aligned MoO3 nanobelts. In Proceedings of the International Conference on Advanced Material Science and Environmental Engineering (AMSEE 2016), Chiang Mai, Thailand, 2016, pp41–43.Google Scholar
  14. [14]
    Senthilkumar, R.; Anandhababu, G.; Mahalingam, T.; Ravi, G. Photoelectrochemical study of MoO3 assorted morphology films formed by thermal evaporation. J. Energy Chem. 2016, 25, 798–804.CrossRefGoogle Scholar
  15. [15]
    Liu, H. F.; Chua, S. J.; Hu, G. X.; Gong, H.; Xiang, N. Effects of substrate on the structure and orientation of ZnO thin film grown by rf-magnetron sputtering. J. Appl. Phys. 2007, 102, 083529.CrossRefGoogle Scholar
  16. [16]
    Liu, H. F.; Chua, S. J.; Chi, D. Z. Effects of temperature and LT-ZnO template on structural and optical properties of thermal-evaporation deposited ZnO submicron crystals. Mater. Lett. 2012, 72, 71–73.CrossRefGoogle Scholar
  17. [17]
    Kurtoglu, M. E.; Longenbach, T.; Gogotsi, Y. Synthesis of quasi-oriented α-MoO3 nanobelts and nanoplatelets on TiO2 coated glass. J. Mater. Chem. 2011, 21, 7931–7936.CrossRefGoogle Scholar
  18. [18]
    Zheng, Q. H.; Huang, J.; Cao, S. L.; Gao, H. L. A flexible ultraviolet photodetector based on single crystalline MoO3 nanosheets. J. Mater. Chem. C 2015, 3, 7469–7475.CrossRefGoogle Scholar
  19. [19]
    Lupan, O.; Trofim, V.; Cretu, V.; Stamov, I.; Syrbu, N. N.; Tiginyanu, I.; Mishra, Y. K.; Adelung, R. Investigation of optical properties and electronic transitions in bulk and nano-microribbons of molybdenum trioxide. J. Phys. D Appl. Phys. 2014, 47, 085302.CrossRefGoogle Scholar
  20. [20]
    Guan, G. J.; Zhang, S. Y.; Liu, S. H.; Cai, Y. Q.; Low, M.; Teng, C. P.; Phang, I. Y.; Cheng, Y.; Duei, K. L.; Srinivasan, B. M. et al. Protein induces layer-by-layer exfoliation of transition metal dichalcogenides. J. Am. Chem. Soc. 2015, 137, 6152–6155.CrossRefGoogle Scholar
  21. [21]
    Smith, R. L. The structural evolution of the MoO3 (010) surface during reduction and oxidation reactions. Ph.D. Dissertation, Carnegie Mellon University, Pittsburgh, PA,USA, 1998.Google Scholar
  22. [22]
    Swanepoel, R. Determination of the thickness and optical constants of amorphous silicon. J. Phys. E Sci. Instrum. 1983, 16, 1214–1222.CrossRefGoogle Scholar
  23. [23]
    Illcan, S.; Caglar, M.; Caglar, Y. Determination of the thickness and optical constants of transparent indium-doped ZnO thin films by the envelope method. Mater. Sci. Poland 2007, 25, 709–718.Google Scholar
  24. [24]
    Liu, H. F.; Chi, D. Z. Magnetron-sputter deposition of Fe3S4 thin films and their conversion into pyrite (FeS2) by thermal sulfurization for photovoltaic applications. J. Vac. Sci. Technol. A 2012, 30, 04D102.CrossRefGoogle Scholar
  25. [25]
    Liu, H. F.; Antwi, K. K. A.; Wang, Y. D.; Ong, L. T.; Chua, S. J.; Chi, D. Z. Atomic layer deposition of crystalline Bi2O3 thin films and their conversion into Bi2S3 by thermal vapor sulfurization. RSC Adv. 2014, 4, 58724–58731.CrossRefGoogle Scholar
  26. [26]
    Dieterle, M.; Weinberg G.; Mestl, G. Raman spectroscopy of molybdenum oxides Part I.Structural characterization of oxygen defects in MoO3−x by DRUV/VIS, Raman spectroscopy and X-ray diffraction. Phys. Chem. Chem. Phys. 2002, 4, 812–821.CrossRefGoogle Scholar
  27. [27]
    Inzani, K.; Grande, T.; Vullum-Bruer, F.; Selbach, S. M. A van der Waals density functional study of MoO3 and its oxygen vacancies. J. Phys. Chem. C 2016, 120, 8959–8968.CrossRefGoogle Scholar
  28. [28]
    Carcia, P. F.; McCarron III, E. M. Synthesis and properties of thin film polymorphs of molybdenum trioxide. Thin Solid Films 1987, 155, 53–63.CrossRefGoogle Scholar
  29. [29]
    Sharma, R. K.; Reddy, G. B. Synthesis and characterization of α-MoO3 microspheres packed with nanoflakes. J. Phys. D Appl. Phys. 2014, 47, 065306.CrossRefGoogle Scholar
  30. [30]
    Sharma, R. K.; Reddy, G. B. Controlled growth of vertically aligned MoO3 nanoflakes by plasma assisted paste sublimation process. J. Appl. Phys. 2013, 114, 184310.CrossRefGoogle Scholar
  31. [31]
    Liu, D.; Lei, W. W.; Hao, J.; Liu, D. D.; Liu, B. B.; Wang, X.; Chen, X. H.; Cui, Q. L.; Zou, G. T.; Liu, J. et al. Highpressure Raman scattering and X-ray diffraction of phase transitions in MoO3. J. Appl. Phys. 2009, 105, 023513.CrossRefGoogle Scholar
  32. [32]
    Silveira, J. V.; Vieira, L. L.; Filho, J. M.; Sampaio, A. J. C.; Alves, O. L.; Filho, A. G. S. Temperature-dependent Raman spectroscopy study in MoO3 nanoribbons. J. Raman Spectrosc. 2012, 43, 1407–1412.CrossRefGoogle Scholar
  33. [33]
    Yan, B.; Zheng, Z.; Zhang, J. X.; Gong, H.; Shen, Z. X.; Huang, W.; Yu, T. Orientation controllable growth of MoO3 nanoflakes: Micro-Raman, field emission, and birefringence properties. J. Phys. Chem. C 2009, 113, 20259–20263.CrossRefGoogle Scholar
  34. [34]
    Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. Quantum espresso: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 2009, 21, 395502.CrossRefGoogle Scholar
  35. [35]
    Liu, H. F.; Antwi, K. K. A.; Ying, J. F.; Chua, S.; Chi, D. Z. Towards large area and continuous MoS2 atomic layers via vapor-phase growth: Thermal vapor sulfurization. Nanotechnology 2014, 25, 405702.CrossRefGoogle Scholar
  36. [36]
    Lee, C.; Yan, H. G.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695–2700.CrossRefGoogle Scholar
  37. [37]
    Liu, H. F.; Chua, S. J. Effects of low-temperature-buffer, rf-power, and annealing on structural and optical properties of ZnO/Al2O3(0001) thin films grown by rf-magnetron sputtering. J. Appl. Phys. 2009, 106, 023511.CrossRefGoogle Scholar
  38. [38]
    Liu, H. F.; Antwi, K. K. A.; Chua, S.; Chi, D. Z. Vaporphase growth and characterization of Mo1−xWxS2 (0 ≤ x ≤ 1) atomic layers on 2-inch sapphire substrates. Nanoscale 2014, 6, 624–629.CrossRefGoogle Scholar
  39. [39]
    Liu, H. F.; Chi, D. Z. Dispersive growth and laser-induced rippling of large-area single-layer MoS2 nanosheets by CVD on c-plane sapphire substrate. Sci. Rep. 2015, 5, 11756.CrossRefGoogle Scholar
  40. [40]
    Ji, F. X.; Ren, X. P.; Zheng, X. Y.; Liu, Y. C.; Pang, L. Q.; Jiang, J. X.; Liu, S. Z. 2D-MoO3 nanosheets for superior gas sensors. Nanoscale 2016, 8, 8696–8703.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  • Hongfei Liu
    • 1
    Email author
  • Yongqing Cai
    • 2
  • Mingyong Han
    • 1
  • Shifeng Guo
    • 1
  • Ming Lin
    • 1
  • Meng Zhao
    • 1
  • Yongwei Zhang
    • 2
  • Dongzhi Chi
    • 1
  1. 1.Institute of Materials Research and Engineering (IMRE)A*STAR (Agency for Science, Technology and Research)SingaporeSingapore
  2. 2.Institute of High Performance Computing (IHPC)A*STAR (Agency for Science, Technology and Research)SingaporeSingapore

Personalised recommendations