CVD growth of fingerprint-like patterned 3D graphene film for an ultrasensitive pressure sensor


With the rapid development of wearable devices, flexible pressure sensors with high sensitivity and wide workable range are highly desired. In nature, there are many well-adapted structures developed through natural selection, which inspired us for the design of biomimetic materials or devices. Particularly, human fingertip skin, where many epidermal ridges amplify external stimulations, might be a good example to imitate for highly sensitive sensors. In this work, based on unique chemical vapor depositions (CVD)-grown 3D graphene films that mimic the morphology of fingertip skin, we fabricated flexible pressure sensing membranes, which simultaneously showed a high sensitivity of 110 (kPa)−1 for 0–0.2 kPa and wide workable pressure range (up to 75 kPa). Hierarchical structured PDMS films molded from natural leaves were used as the supporting elastic films for the graphene films, which also contribute to the superior performance of the pressure sensors. The pressure sensor showed a low detection limit (0.2 Pa), fast response (< 30 ms), and excellent stability for more than 10,000 loading/unloading cycles. Based on these features, we demonstrated its applications in detecting tiny objects, sound, and human physiological signals, showing its potential in wearable electronics for health monitoring and human/machine interfaces.


  1. [1]

    Trung, T. Q.; Ramasundaram, S.; Hwang, B. U.; Lee, N. E. An all-elastomeric transparent and stretchable temperature sensor for body-attachable wearable electronics. Adv. Mater. 2016, 28, 502–509.

    Article  Google Scholar 

  2. [2]

    Windmiller, J. R.; Wang, J. Wearable electrochemical sensors and biosensors: A review. Electroanalysis 2013, 25, 29–46.

    Article  Google Scholar 

  3. [3]

    Shaplov, A. S.; Ponkratov, D. O.; Aubert, P. H.; Lozinskaya, E. I.; Plesse, C.; Vidal, F.; Vygodskii, Y. S. A first truly allsolid state organic electrochromic device based on polymeric ionic liquids. Chem. Commun. 2014, 50, 3191–3193.

    Article  Google Scholar 

  4. [4]

    Lipomi, D. J.; Tee, B. C. K.; Vosgueritchian, M.; Bao, Z. N. Stretchable organic solar cells. Adv. Mater. 2011, 23, 1771–1775.

    Article  Google Scholar 

  5. [5]

    Kim, Y.; Zhu, J.; Yeom, B.; Di Prima, M.; Su, X. L.; Kim, J. G.; Yoo, S. J.; Uher, C.; Kotov, N. A. Stretchable nanoparticle conductors with self-organized conductive pathways. Nature 2013, 500, 59–63.

    Article  Google Scholar 

  6. [6]

    Ahn, J. H.; Je, J. H. Stretchable electronics: Materials, architectures and integrations. J. Phys. D Appl. Phys. 2012, 45, 103001.

    Article  Google Scholar 

  7. [7]

    Lee, J.; Lee, P.; Lee, H. B.; Hong, S.; Lee, I.; Yeo, J.; Lee, S. S.; Kim, T. S.; Lee, D.; Ko, S. H. Room-temperature nanosoldering of a very long metal nanowire network by conducting-polymer-assisted joining for a flexible touchpanel application. Adv. Funct. Mater. 2013, 23, 4171–4176.

    Article  Google Scholar 

  8. [8]

    Rogers, J. A.; Someya, T.; Huang, Y. G. Materials and mechanics for stretchable electronics. Science 2010, 327, 1603–1607.

    Article  Google Scholar 

  9. [9]

    Wang, C.; Hwang, D.; Yu, Z. B.; Takei, K.; Park, J.; Chen, T.; Ma, B. W.; Javey, A. User-interactive electronic skin for instantaneous pressure visualization. Nat. Mater. 2013, 12, 899–904.

    Article  Google Scholar 

  10. [10]

    Takei, K.; Takahashi, T.; Ho, J. C.; Ko, H.; Gillies, A. G.; Leu, P. W.; Fearing, R. S.; Javey, A. Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nat. Mater. 2010, 9, 821–826.

    Article  Google Scholar 

  11. [11]

    Mannsfeld, S. C. B.; Tee, B. C. K.; Stoltenberg, R. M.; Chen, C. V. H. H.; Barman, S.; Muir, B. V. O.; Sokolov, A. N.; Reese, C.; Bao, Z. N. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 2010, 9, 859–864.

    Article  Google Scholar 

  12. [12]

    Schwartz, G.; Tee, B. C. K.; Mei, J. G.; Appleton, A. L.; Kim, D. H.; Wang, H. L.; Bao, Z. N. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat. Commun. 2013, 4, 1859.

    Article  Google Scholar 

  13. [13]

    Kim, D. H.; Lu, N. S.; Ma, R.; Kim, Y. S.; Kim, R. H.; Wang, S. D.; Wu, J.; Won, S. M.; Tao, H.; Islam, A. et al. Epidermal electronics. Science 2011, 333, 838–843.

    Article  Google Scholar 

  14. [14]

    Ghosh, S. K.; Adhikary, P.; Jana, S.; Biswas, A.; Sencadas, V.; Gupta, S. D.; Tudu, B.; Mandal, D. Electrospun gelatin nanofiber based self-powered bio-e-skin for health care monitoring. Nano Energy 2017, 36, 166–175.

    Article  Google Scholar 

  15. [15]

    Lee, S.; Reuveny, A.; Reeder, J.; Lee, S.; Jin, H.; Liu, Q. H.; Yokota, T.; Sekitani, T.; Isoyama, T.; Abe, Y. et al. A transparent bending-insensitive pressure sensor. Nat. Nanotechnol. 2016, 11, 472–478.

    Article  Google Scholar 

  16. [16]

    Hou, C. Y.; Wang, H. Z.; Zhang, Q. H.; Li, Y. G.; Zhu, M. F. Highly conductive, flexible, and compressible all-graphene passive electronic skin for sensing human touch. Adv. Mater. 2014, 26, 5018–5024.

    Article  Google Scholar 

  17. [17]

    Cohen, D. J.; Mitra, D.; Peterson, K.; Maharbiz, M. M. A highly elastic, capacitive strain gauge based on percolating nanotube networks. Nano Lett. 2012, 12, 1821–1825.

    Article  Google Scholar 

  18. [18]

    Gao, Q.; Meguro, H.; Okamoto, S.; Kimura, M. Flexible tactile sensor using the reversible deformation of poly(3-hexylthiophene) nanofiber assemblies. Langmuir 2012, 28, 17593–17596.

    Article  Google Scholar 

  19. [19]

    Jung, S.; Lee, J.; Hyeon, T.; Lee, M.; Kim, D. H. Fabricbased integrated energy devices for wearable activity monitors. Adv. Mater. 2014, 26, 6329–6334.

    Article  Google Scholar 

  20. [20]

    Nie, B. Q.; Li, R. Y.; Cao, J.; Brandt, J. D.; Pan, T. R. Flexible transparent iontronic film for interfacial capacitive pressure sensing. Adv. Mater. 2015, 27, 6055–6062.

    Article  Google Scholar 

  21. [21]

    Yang, Y.; Zhang, H. L.; Lin, Z. H.; Zhou, Y. S.; Jing, Q. S.; Su, Y. J.; Yang, J.; Chen, J.; Hu, C. G.; Wang, Z. L. Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system. ACS Nano 2013, 7, 9213–9222.

    Article  Google Scholar 

  22. [22]

    Zhou, J.; Gu, Y. D.; Fei, P.; Mai, W. J.; Gao, Y. F.; Yang, R. S.; Bao, G.; Wang, Z. L. Flexible piezotronic strain sensor. Nano Lett. 2008, 8, 3035–3040.

    Article  Google Scholar 

  23. [23]

    Mandal, D.; Yoon, S.; Kim, K. J. Origin of piezoelectricity in an electrospun poly(vinylidene fluoride-trifluoroethylene) nanofiber web-based nanogenerator and nano-pressure sensor. Macromol. Rapid Commun. 2011, 32, 831–837.

    Article  Google Scholar 

  24. [24]

    Pang, C.; Lee, G. Y.; Kim, T. I.; Kim, S. M.; Kim, H. N.; Ahn, S. H.; Suh, K. Y. A flexible and highly sensitive straingauge sensor using reversible interlocking of nanofibres. Nat. Mater. 2012, 11, 795–801.

    Article  Google Scholar 

  25. [25]

    Yamada, T.; Hayamizu, Y.; Yamamoto, Y.; Yomogida, Y.; Izadi-Najafabadi, A.; Futaba, D. N.; Hata, K. A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 2011, 6, 296–301.

    Article  Google Scholar 

  26. [26]

    Gong, S.; Schwalb, W.; Wang, Y. W.; Chen, Y.; Tang, Y.; Si, J.; Shirinzadeh, B.; Cheng, W. L. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat. Commun. 2014, 5, 3132.

    Google Scholar 

  27. [27]

    Choong, C. L.; Shim, M. B.; Lee, B. S.; Jeon, S.; Ko, D. S.; Kang, T. H.; Bae, J.; Lee, S. H.; Byun, K. E.; Im, J. et al. Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Adv. Mater. 2014, 26, 3451–3458.

    Article  Google Scholar 

  28. [28]

    Luo, N. Q.; Dai, W. X.; Li, C. L.; Zhou, Z. Q.; Lu, L. Y.; Poon, C. C. Y.; Chen, S. C.; Zhang, Y. T.; Zhao, N. Flexible piezoresistive sensor patch enabling ultralow power cuffless blood pressure measurement. Adv. Funct. Mater. 2016, 26, 1178–1187.

    Article  Google Scholar 

  29. [29]

    Sheng, L. Z.; Liang, Y.; Jiang, L. L.; Wang, Q.; Wei, T.; Qu, L. T.; Fan, Z. J. Bubble-decorated honeycomb-like graphene film as ultrahigh sensitivity pressure sensors. Adv. Funct. Mater. 2015, 25, 6545–6551.

    Article  Google Scholar 

  30. [30]

    Yao, H. B.; Ge, J.; Wang, C. F.; Wang, X.; Hu, W.; Zheng, Z. J.; Ni, Y.; Yu, S. H. A flexible and highly pressure-sensitive graphene–polyurethane sponge based on fractured microstructure design. Adv. Mater. 2013, 25, 6692–6698.

    Article  Google Scholar 

  31. [31]

    Pan, L. J.; Chortos, A.; Yu, G. H.; Wang, Y. Q.; Isaacson, S.; Allen, R.; Shi, Y.; Dauskardt, R.; Bao, Z. N. An ultrasensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nat. Commun. 2014, 5, 3002.

    Google Scholar 

  32. [32]

    He, W. N.; Li, G. Y.; Zhang, S. Q.; Wei, Y.; Wang, J.; Li, Q. W.; Zhang, X. T. Polypyrrole/silver coaxial nanowire aero-sponges for temperature-independent stress sensing and stress-triggered joule heating. ACS Nano 2015, 9, 4244–4251.

    Article  Google Scholar 

  33. [33]

    Trung, T. Q.; Lee, N. E. Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoringand personal healthcare. Adv. Mater. 2016, 28, 4338–4372.

    Article  Google Scholar 

  34. [34]

    Jang, H.; Park, Y. J.; Chen, X.; Das, T.; Kim, M. S.; Ahn, J. H. Graphene-based flexible and stretchable electronics. Adv. Mater. 2016, 28, 4184–4202.

    Article  Google Scholar 

  35. [35]

    Cheng, T.; Zhang, Y. Z.; Lai, W. Y.; Huang, W. Stretchable thin-film electrodes for flexible electronics with high deformability and stretchability. Adv. Mater. 2015, 27, 3349–3376.

    Article  Google Scholar 

  36. [36]

    Wang, C. Y.; Li, X.; Gao, E. L.; Jian, M. Q.; Xia, K. L.; Wang, Q.; Xu, Z. P.; Ren, T. L.; Zhang, Y. Y. Carbonized silk fabric for ultrastretchable, highly sensitive, and wearable strain sensors. Adv. Mater. 2016, 28, 6640–6648.

    Article  Google Scholar 

  37. [37]

    Zhang, M. C.; Wang, C. Y.; Wang, H. M.; Jian, M. Q.; Hao, X. Y.; Zhang, Y. Y. Carbonized cotton fabric for highperformance wearable strain sensors. Adv. Funct. Mater. 2017, 27, 1604795.

    Article  Google Scholar 

  38. [38]

    Tian, H.; Shu, Y.; Wang, X. F.; Mohammad, M. A.; Bie, Z.; Xie, Q. Y.; Li, C.; Mi, W. T.; Yang, Y.; Ren, T. L. A graphene-based resistive pressure sensor with record-high sensitivity in a wide pressure range. Sci. Rep. 2015, 5, 8603.

    Article  Google Scholar 

  39. [39]

    Chen, Z.; Wang, Z.; Li, X.; Lin, Y.; Luo, N.; Long, M.; Zhao, N.; Xu, J. B. Flexible piezoelectric-induced pressure sensors for static measurements based on nanowires/graphene heterostructures. ACS Nano. 2017, 11, 4507–4513.

    Article  Google Scholar 

  40. [40]

    Wagner, S.; Bauer, S. Materials for stretchable electronics. MRS Bull. 2012, 37, 207–213.

    Article  Google Scholar 

  41. [41]

    Park, M.; Im, J.; Shin, M.; Min, Y.; Park, J.; Cho, H.; Park, S.; Shim, M. B.; Jeon, S.; Chung, D. Y. et al. Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres. Nat. Nanotechnol. 2012, 7, 803–809.

    Article  Google Scholar 

  42. [42]

    Tang, Y.; Gong, S.; Chen, Y.; Yap, L. W.; Cheng, W. L. Manufacturable conducting rubber ambers and stretchable conductors from copper nanowire aerogel monoliths. ACS Nano 2014, 8, 5707–5714.

    Article  Google Scholar 

  43. [43]

    Zhu, B. W.; Niu, Z. Q.; Wang, H.; Leow, W. R.; Wang, H.; Li, Y. G.; Zheng, L. Y.; Wei, J.; Huo, F. W.; Chen, X. D. Microstructured graphene arrays for highly sensitive flexible tactile sensors. Small 2014, 10, 3625–3631.

    Article  Google Scholar 

  44. [44]

    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  Google Scholar 

  45. [45]

    Neto, A. H. C.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162.

    Article  Google Scholar 

  46. [46]

    Allen, M. J.; Tung, V. C.; Kaner, R. B. Honeycomb carbon: A review of graphene. Chem. Rev. 2010, 110, 132–145.

    Article  Google Scholar 

  47. [47]

    Han, T. H.; Kim, H.; Kwon, S. J.; Lee, T. W. Graphene-based flexible electronic devices. Mat. Sci. Eng. R. 2017, 118, 1–43.

    Article  Google Scholar 

  48. [48]

    Zheng, Q. B.; Li, Z. G.; Yang, J. H.; Kim, J. K. Graphene oxide-based transparent conductive films. Prog. Mater. Sci. 2014, 64, 200–247.

    Article  Google Scholar 

  49. [49]

    Sahoo, N. G.; Pan, Y. Z.; Li, L.; Chan, S. H. Graphene-based materials for energy conversion. Adv. Mater. 2012, 24, 4203–4210.

    Article  Google Scholar 

  50. [50]

    Han, S.; Wu, D. Q.; Li, S.; Zhang, F.; Feng, X. L. Porous graphene materials for advanced electrochemical energy storage and conversion devices. Adv. Mater. 2014, 26, 849–864.

    Article  Google Scholar 

  51. [51]

    Gao, H. C.; Duan, H. W. 2D and 3D graphene materials: Preparation and bioelectrochemical applications. Biosens. Bioelectron. 2015, 65, 404–419.

    Article  Google Scholar 

  52. [52]

    Kim, S. J.; Choi, K.; Lee, B.; Kim, Y.; Hong, B. H. Materials for flexible, stretchable electronics: Graphene and 2D materials. Annu. Rev. Mater. Res. 2015, 45, 63–84.

    Article  Google Scholar 

  53. [53]

    Wang, Z. F.; Huang, Y.; Sun, J. F.; Huang, Y.; Hu, H.; Jiang, R. J.; Gai, W. M.; Li, G. M.; Zhi, C. Y. Polyurethane/ cotton/carbon nanotubes core-spun yarn as high reliability stretchable strain sensor for human motion detection. ACS Appl. Mater. Interfaces 2016, 8, 24837–24843.

    Article  Google Scholar 

  54. [54]

    Bae, G. Y.; Pak, S. W.; Kim, D.; Lee, G.; Kim, D. H.; Chung, Y.; Cho, K. Linearly and highly pressure-sensitive electronic skin based on a bioinspired hierarchical structural array. Adv. Mater. 2016, 28, 5300–5306.

    Article  Google Scholar 

  55. [55]

    Chun, S.; Hong, A.; Choi, Y.; Ha, C.; Park, W. A tactile sensor using a conductive graphene-sponge composite. Nanoscale 2016, 8, 9185–9192.

    Article  Google Scholar 

  56. [56]

    Zhang, H.; Zhang, Y.; Wang, B.; Chen, Z.; Sui, Y.; Zhang, Y.; Tang, C.; Zhu, B.; Xie, X.; Yu, G. et al. Effect of hydrogen in size-limited growth of graphene by atmospheric pressure chemical vapor deposition. J. Electron. Mater. 2015, 44, 79–86.

    Article  Google Scholar 

  57. [57]

    Yu, Q. K.; Jauregui, L. A.; Wu, W.; Colby, R.; Tian, J. F.; Su, Z. H.; Cao, H. L.; Liu, Z. H.; Pandey, D.; Wei, D. G. et al. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat. Mater. 2011, 10, 443–449.

    Article  Google Scholar 

  58. [58]

    Artyukhov, V. I.; Liu, Y.; Yakobson, B. I. Equilibrium at the edge and atomistic mechanisms of graphene growth. Proc. Natl. Acad. Sci. USA 2012, 109, 15136–15140.

    Article  Google Scholar 

  59. [59]

    Li, X. S.; Magnuson, C. W.; Venugopal, A.; Tromp, R. M.; Hannon, J. B.; Vogel, E. M.; Colombo, L.; Ruoff, R. S. Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J. Am. Chem. Soc. 2011, 133, 2816–2819.

    Article  Google Scholar 

Download references


This work was supported by the National Natural Science Foundation of China (NSFC) (Nos. 51422204, 51672153 and 51372132) and the National Basic Research Program of China (973 Program) (Nos. 2016YFA0200103 and 2013CB228506).

Author information



Corresponding author

Correspondence to Yingying Zhang.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xia, K., Wang, C., Jian, M. et al. CVD growth of fingerprint-like patterned 3D graphene film for an ultrasensitive pressure sensor. Nano Res. 11, 1124–1134 (2018).

Download citation


  • electronic skin
  • flexible pressure sensor
  • 3D graphene film
  • fingertip skin
  • hierarchical structures