Morphology and property investigation of primary particulate matter particles from different sources


Particulate matter (PM) pollution has become a major environmental concern in many developing countries. PM pollution control remains a great challenge owing to the complex sources and evolution processes of PM particles. There are two categories of PM, i.e., primary and secondary PM particles, and the primary PM emissions play a key role in the formation of PM pollution. Knowledge of primary PM particle compositions, sources, and evolution processes is of great importance to the effective control of PM pollution. In order to characterize PM particles effectively, their fundamental properties including the morphology, concentration distribution, surface chemistry, and composition must be systematically investigated. In this study, we collected and analyzed six types of PM10 and PM2.5 particles from different sources using an in situ sampling approach. The concentration distributions of PM particles were analyzed and comparative analysis of the morphologies, distributions, capture mechanisms, and compositions of PM particles was conducted using scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and energy-dispersive X-ray spectroscopy. We found that there were significant differences in the structures, morphologies, and capture mechanisms of PM2.5 and PM10 particles. The systematic comparative investigation in this work will benefit the study of evolution processes and the effective control of PM pollution in the future.

This is a preview of subscription content, log in to check access.


  1. [1]

    Fang, M.; Chan, C. K.; Yao, X. H. Managing air quality in a rapidly developing nation: China. Atmos. Environ. 2009, 43, 79–86.

    Article  Google Scholar 

  2. [2]

    Seinfeld, J. H. Urban air pollution: State of the science. Science 1989, 243, 745–752.

    Article  Google Scholar 

  3. [3]

    Zhang, R.; Jing, J.; Tao, J.; Hsu, S. C.; Wang, G.; Cao, J.; Lee, C. S. L.; Zhu, L.; Chen, Z.; Zhao, Y. et al. Chemical characterization and source apportionment of PM2.5 in Beijing: Seasonal perspective. Atmos. Chem. Phys. 2013, 13, 7053–7074.

    Article  Google Scholar 

  4. [4]

    Maricq, M. M. Chemical characterization of particulate emissions from diesel engines: A review. J. Aerosol Sci. 2007, 38, 1079–1118.

    Article  Google Scholar 

  5. [5]

    Makkonen, U.; Hellén, H.; Anttila, P.; Ferm, M. Size distribution and chemical composition of airborne particles in south-eastern Finland during different seasons and wildfire episodes in 2006. Sci. Total Environ. 2010, 408, 644–651.

    Article  Google Scholar 

  6. [6]

    Betha, R.; Behera, S. N.; Balasubramanian, R. 2013 Southeast Asian smoke haze: Fractionation of particulate-bound elements and associated health risk. Environ. Sci. Technol. 2014, 48, 4327–4335.

    Article  Google Scholar 

  7. [7]

    Wu, S. W.; Deng, F. R.; Wei, H. Y.; Huang, J.; Wang, X.; Hao, Y.; Zheng, C. J.; Qin, Y.; Lv, H. B.; Shima, M. et al. Association of cardiopulmonary health effects with sourceappointed ambient fine particulate in Beijing, China: A combined analysis from the healthy volunteer natural relocation (HVNR) study. Environ. Sci. Technol. 2014, 48, 3438–3448.

    Article  Google Scholar 

  8. [8]

    Brook, R. D.; Rajagopalan, S.; Pope III, C. A.; Brook, J. R.; Bhatnagar, A.; Diez-Roux, A. V.; Holguin, F.; Hong, Y. L.; Luepker, R. V.; Mittleman, M. A. et al. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 2010, 121, 2331–2378.

    Article  Google Scholar 

  9. [9]

    Anenberg, S. C.; Horowitz, L. W.; Tong, D. Q.; West, J. J. An estimate of the global burden of anthropogenic ozone and fine particulate matter on premature human mortality using atmospheric modeling. Environ. Health Perspect. 2010, 118, 1189–1195.

    Article  Google Scholar 

  10. [10]

    Timonen, K. L.; Vanninen, E.; De Hartog, J.; Ibald-Mulli, A.; Brunekreef, B.; Gold, D. R.; Heinrich, J.; Hoek, G.; Lanki, T.; Peters, A. et al. Effects of ultrafine and fine particulate and gaseous air pollution on cardiac autonomic control in subjects with coronary artery disease: The ULTRA study. J. Expo. Sci. Environ. Epidemiol. 2006, 16, 332–341.

    Article  Google Scholar 

  11. [11]

    Zhao, S. H.; Chen, L. Q.; Li, Y. L.; Xing, Z. Y.; Du, K. Summertime spatial variations in atmospheric particulate matter and its chemical components in different functional areas of Xiamen, China. Atmosphere 2015, 6, 234–254.

    Article  Google Scholar 

  12. [12]

    Hoek, G.; Krishnan, R. M.; Beelen, R.; Peters, A.; Ostro, B.; Brunekreef, B.; Kaufman, J. D. Long-term air pollution exposure and cardio-respiratory mortality: A review. Environ. Health 2013, 12, 43.

    Article  Google Scholar 

  13. [13]

    Zhang, Y. Y.; Yuan, S.; Feng, X.; Li, H. W.; Zhou, J. W.; Wang, B. Preparation of nanofibrous metal–organic framework filters for efficient air pollution control. J. Am. Chem. Soc. 2016, 138, 5785–5788.

    Article  Google Scholar 

  14. [14]

    Zhang, R. F.; Liu, C.; Hsu, P. C.; Zhang, C. F.; Liu, N.; Zhang, J. S.; Lee, H. R.; Lu, Y. Y.; Qiu, Y. C.; Chu, S. et al. Nanofiber air filters with high-temperature stability for efficient PM2.5 removal from the pollution sources. Nano Lett. 2016, 16, 3642–3649.

    Article  Google Scholar 

  15. [15]

    Xu, J. W.; Liu, C.; Hsu, P. C.; Liu, K.; Zhang, R. F.; Liu, Y. Y.; Cui, Y. Roll-to-roll transfer of electrospun nanofiber film for high-efficiency transparent air filter. Nano Lett. 2016, 16, 1270–1275.

    Article  Google Scholar 

  16. [16]

    Wang, S.; Zhao, X. L.; Yin, X.; Yu, J. Y.; Ding, B. Electret polyvinylidene fluoride nanofibers hybridized by polytetrafluoroethylene nanoparticles for high-efficiency air filtration. ACS Appl. Mater. Interfaces 2016, 8, 23985–23994.

    Article  Google Scholar 

  17. [17]

    Liu, C.; Hsu, P. C.; Lee, H. W.; Ye, M.; Zheng, G. Y.; Liu, N.; Li, W. Y.; Cui, Y. Transparent air filter for high-efficiency PM2.5 capture. Nat. Commun. 2015, 6, 6205.

    Article  Google Scholar 

  18. [18]

    Gong, G. M.; Zhou, C.; Wu, J. T.; Jin, X.; Jiang, L. Nanofibrous adhesion: The twin of gecko adhesion. ACS Nano 2015, 9, 3721–3727.

    Article  Google Scholar 

  19. [19]

    Li, P.; Zong, Y. C.; Zhang, Y. Y.; Yang, M. M.; Zhang, R. F.; Li, S. Q.; Wei, F. In situ fabrication of depth-type hierarchical CNT/quartz fiber filters for high efficiency filtration of sub-micron aerosols and high water repellency. Nanoscale 2013, 5, 3367–3372.

    Article  Google Scholar 

  20. [20]

    Han, C. B.; Jiang, T.; Zhang, C.; Li, X. H.; Zhang, C. Y.; Cao, X.; Wang, Z. L. Removal of particulate matter emissions from a vehicle using a self-powered triboelectric filter. ACS Nano 2015, 9, 12552–12561.

    Article  Google Scholar 

  21. [21]

    Wang, C. Y.; Wu, S. Y.; Jian, M. Q.; Xie, J. R.; Xu, L. P.; Yang, X. D.; Zheng, Q. S.; Zhang, Y. Y. Silk nanofibers as high efficient and lightweight air filter. Nano Res. 2016, 9, 2590–2597.

    Article  Google Scholar 

  22. [22]

    Hildemann, L. M.; Rogge, W. F.; Cass, G. R.; Mazurek, M. A.; Simoneit, B. R. T. Contribution of primary aerosol emissions from vegetation-derived sources to fine particle concentrations in Los Angeles. J. Geophys. Res. Atmos. 1996, 101, 19541–19549.

    Article  Google Scholar 

  23. [23]

    Xing, J.; Pleim, J.; Mathur, R.; Pouliot, G.; Hogrefe, C.; Gan, C. M.; Wei, C. Historical gaseous and primary aerosol emissions in the United States from 1990 to 2010. Atmos. Chem. Phys. 2013, 13, 7531–7549.

    Article  Google Scholar 

  24. [24]

    Limbeck, A.; Kulmala, M.; Puxbaum, H. Secondary organic aerosol formation in the atmosphere via heterogeneous reaction of gaseous isoprene on acidic particles. Geophys. Res. Lett. 2003, 30, DOI: 10.1029/2003GL017738.

    Google Scholar 

  25. [25]

    Schuetzle, D.; Cronn, D.; Crittenden, A. L.; Charlson, R. J. Molecular composition of secondary aerosol and its possible origin. Environ. Sci. Tech. 1975, 9, 838–845.

    Article  Google Scholar 

  26. [26]

    Huang, R. J.; Zhang, Y. L.; Bozzetti, C.; Ho, K. F.; Cao, J. J.; Han, Y. M.; Daellenbach, K. R.; Slowik, J. G.; Platt, S. M.; Canonaco, F. et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 2014, 514, 218–222.

    Article  Google Scholar 

  27. [27]

    Wal, R. L. V.; Bryg, V. M.; Hays, M. D. XPS analysis of combustion aerosols for chemical composition, surface chemistry, and carbon chemical state. Anal. Chem. 2011, 83, 1924–1930.

    Article  Google Scholar 

  28. [28]

    Jang, M.; Czoschke, N. M.; Lee, S.; Kamens, R. M. Heterogeneous atmospheric aerosol production by acidcatalyzed particle-phase reactions. Science 2002, 298, 814–817.

    Article  Google Scholar 

  29. [29]

    Li, W. J.; Shao, L. Y.; Zhang, D. Z.; Ro, C. U.; Hu, M.; Bi, X. H.; Geng, H.; Matsuki, A.; Niu, H. Y.; Chen, J. M. A review of single aerosol particle studies in the atmosphere of East Asia: Morphology, mixing state, source, and heterogeneous reactions. J. Cleaner Prod. 2015, 112, 1330–1349.

    Article  Google Scholar 

  30. [30]

    Wang, J.; Hu, Z. M.; Chen, Y. Y.; Chen, Z. L.; Xu, S. Y. Contamination characteristics and possible sources of PM10 and PM2.5 in different functional areas of Shanghai, China. Atmos. Environ. 2013, 68, 221–229.

    Article  Google Scholar 

  31. [31]

    Pope III, C. A.; Dockery, D. W.; Spengler, J. D.; Raizenne, M. E. Respiratory health and PM10 pollution: A daily time series analysis. Am. Rev. Respir. Dis. 1991, 144, 668–674.

    Article  Google Scholar 

  32. [32]

    Pope III, C. A.; Schwartz, J.; Ransom, M. R. Daily mortality and PM10 pollution in Utah Valley. Arch. Environ. Health 1992, 47, 211–217.

    Article  Google Scholar 

  33. [33]

    Pope III, C. A.; Dockery, D. W. Acute health effects of PM10 pollution on symptomatic and asymptomatic children. Am. Rev. Respir. Dis. 1992, 145, 1123–1128.

    Article  Google Scholar 

  34. [34]

    Ostro, B. D.; Hurley, S.; Lipsett, M. J. Air pollution and daily mortality in the Coachella Valley, California: A study of PM10 dominated by coarse particles. Environ. Res. 1999, 81, 231–238.

    Article  Google Scholar 

  35. [35]

    Yue, W. S.; Li, X. L.; Liu, J. F.; Li, Y.; Yu, X. H.; Deng, B.; Wan, T. M.; Zhang, G. L.; Huang, Y. Y.; He, W. et al. Characterization of PM2.5 in the ambient air of Shanghai city by analyzing individual particles. Sci. Total Environ. 2006, 368, 916–925.

    Article  Google Scholar 

  36. [36]

    Labrada-Delgado, G.; Aragon-Pina, A.; Campos-Ramos, A.; Castro-Romero, T.; Amador-Munoz, O.; Villalobos-Pietrini, R. Chemical and morphological characterization of PM2.5 collected during MILAGRO campaign using scanning electron microscopy. Atmos. Pollut. Res. 2012, 3, 289–300.

    Article  Google Scholar 

  37. [37]

    Feng, X. D.; Dang, Z.; Huang, W. L.; Shao, L. Y.; Li, W. J. Microscopic morphology and size distribution of particles in PM2.5 of Guangzhou City. J. Atmos. Chem. 2009, 64, 37–51.

    Article  Google Scholar 

  38. [38]

    Longhin, E.; Holme, J. A.; Gutzkow, K. B.; Arlt, V. M.; Kucab, J. E.; Camatini, M.; Gualtieri, M. Cell cycle alterations induced by urban PM2.5 in bronchial epithelial cells: Characterization of the process and possible mechanisms involved. Part. Fibre Toxicol. 2013, 10, 63.

    Article  Google Scholar 

  39. [39]

    Deng, X. B.; Zhang, F.; Rui, W.; Long, F.; Wang, L. J.; Feng, Z. H.; Chen, D. L.; Ding, W. J. PM2.5-induced oxidative stress triggers autophagy in human lung epithelial A549 cells. Toxicol. Vitro 2013, 27, 1762–1770.

    Article  Google Scholar 

  40. [40]

    Hueglin, C.; Gehrig, R.; Baltensperger, U.; Gysel, M.; Monn, C.; Vonmont, H. Chemical characterisation of PM2.5, PM10 and coarse particles at urban, near-city and rural sites in Switzerland. Atmos. Environ. 2005, 39, 637–651.

    Article  Google Scholar 

  41. [41]

    Lin, T. C.; Krishnaswamy, G.; Chi, D. S. Incense smoke: clinical, structural and molecular effects on airway disease. Clin. Mol. Allergy 2008, 6, 3.

    Article  Google Scholar 

Download references


We thank Dr. Yuanqing Li for fruitful discussions.

Author information



Corresponding author

Correspondence to Yi Cui.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Liu, C., Zhou, G. et al. Morphology and property investigation of primary particulate matter particles from different sources. Nano Res. 11, 3182–3192 (2018).

Download citation


  • particulate matter 2.5 (PM2.5)
  • source analysis
  • nanofiber
  • filtration
  • property
  • distribution
  • characterization