Skip to main content

Ultrasensitive detection of Ebola matrix protein in a memristor mode

Abstract

We demonstrate the direct biosensing of the Ebola VP40 matrix protein, using a memristor mode of a liquid-integrated nanodevice, based on a large array of honeycomb-shaped silicon nanowires. To shed more light on the principle of biodetection using memristors, we engineered the opening of the current-minima voltage gap VGAP by involving the third gap-control electrode (gate voltage, VG) into the system. The primary role of VG is to mimic the presence of the charged species of the desired sign at the active area of the sensor. We further showed the advantages of biodetection with an initially opened controlled gap (VGAP ≠ 0), which allows the detection of the lowest concentrations of the biomolecules carrying arbitrary positive or negative charges; this feature was not present in previous configurations. We compared the bio-memristor performance, in terms of its detection range and sensitivity, to that of the already-known field-effect transistor (FET) mode by operating the same device. To our knowledge, this is the first demonstration of Ebola matrix protein detection using a nanoscaled electrical sensor.

This is a preview of subscription content, access via your institution.

References

  1. Liu, J.; Xie, C.; Dai, X. C.; Jin, L. H.; Zhou, W.; Lieber, C. M. Multifunctional three-dimensional macroporous nanoelectronic networks for smart materials. Proc. Natl. Acad. Sci. USA 2013, 110, 6694–6699.

    Article  Google Scholar 

  2. Zörgiebel, F. M.; Pregl, S.; Römhildt, L.; Opitz, J.; Weber, W. M.; Mikolajick, T.; Baraban, L.; Cuniberti, G. Schottky barrier-based silicon nanowire pH sensor with live sensitivity control. Nano Res. 2014, 7, 263–271.

    Article  Google Scholar 

  3. Gao, X. P. A.; Zheng, G. F.; Lieber, C. M. Subthreshold regime has the optimal sensitivity for nanowire FET biosensors. Nano Lett. 2010, 10, 547–552.

    Article  Google Scholar 

  4. Cui, Y.; Wei, Q. Q.; Park, H.; Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289–1292.

    Article  Google Scholar 

  5. Haes, A. J.; Van Duyne, R. P. A nanoscale optical biosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J. Am. Chem. Soc. 2002, 124, 10596–10604.

    Article  Google Scholar 

  6. Vu, X. T.; GhoshMoulick, R.; Eschermann, J. F.; Stockmann, R.; Offenhäusser, A.; Ingebrandt, S. Fabrication and application of silicon nanowire transistor arrays for biomolecular detection. Sen. Actuators, B Chem. 2010, 144, 354–360.

    Article  Google Scholar 

  7. Patolsky, F.; Zheng, G. F.; Lieber, C. M. Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species. Nat. Protoc. 2006, 1, 1711–1724.

    Article  Google Scholar 

  8. Patolsky, F.; Zheng, G. F.; Hayden, O.; Lakadamyali, M.; Zhuang, X. W.; Lieber, C. M. Electrical detection of single viruses. Proc. Natl. Acad. Sci. USA 2004, 101, 14017–14022.

    Article  Google Scholar 

  9. Patolsky, F.; Timko, B. P.; Yu, G. H.; Fang, Y.; Greytak, A. B.; Zheng, G. F.; Lieber, C. M. Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science 2006, 313, 1100–1104.

    Article  Google Scholar 

  10. Daniels, J. S.; Pourmand, N. Label-free impedance biosensors: Opportunities and challenges. Electroanalysis 2007, 19, 1239–1257.

    Article  Google Scholar 

  11. Sharma, R.; Deacon, S. E.; Nowak, D.; George, S. E.; Szymonik, M. P.; Tang, A. A. S.; Tomlinson, D. C.; Davies, A. G.; McPherson, M. J.; Wälti, C. Label-free electrochemical impedance biosensor to detect human interleukin-8 in serum with sub-pg/mL sensitivity. Biosens. Bioelectron. 2016, 80, 607–613.

    Article  Google Scholar 

  12. Lin, Z. Y.; Chen, L. F.; Zhang, G. Y.; Liu, Q. D.; Qiu, B.; Cai, Z. W.; Chen, G. N. Label-free aptamer-based electrochemical impedance biosensor for 17ß-estradiol. Analyst 2012, 137, 819–822.

    Article  Google Scholar 

  13. Medina-Sánchez, M.; Ibarlucea, B.; Pérez, N.; Karnaushenko, D. D.; Weiz, S. M.; Baraban, L.; Cuniberti, G.; Schmidt, O. G. High-performance three-dimensional tubular nanomembrane sensor for DNA detection. Nano Lett. 2016, 16, 4288–4296.

    Article  Google Scholar 

  14. Chen, K. I.; Li, B. R.; Chen, Y. T. Silicon nanowire fieldeffect transistor-based biosensors for biomedical diagnosis and cellular recording investigation. Nano Today 2011, 6, 131–154.

    Article  Google Scholar 

  15. Liu, S.; Guo, X. F. Carbon nanomaterials field-effecttransistor- based biosensors. NPG Asia Mater. 2012, 4, e23.

    Article  Google Scholar 

  16. Schütt, J.; Ibarlucea, B.; Illing, R.; Zörgiebel, F.; Pregl, S.; Nozaki, D.; Weber, W. M.; Mikolajick, T.; Baraban, L.; Cuniberti, G. Compact nanowire sensors probe microdroplets. Nano Lett. 2016, 16, 4991–5000.

    Article  Google Scholar 

  17. Karnaushenko, D.; Ibarlucea, B.; Lee, S.; Lin, G.; Baraban, L.; Pregl, S.; Melzer, M.; Makarov, D.; Weber, W. M.; Mikolajick, T. et al. Light weight and flexible high-performance diagnostic platform. Adv. Healthc. Mater. 2015, 4, 1517–1525.

    Article  Google Scholar 

  18. Yang, Y. B.; Yang, X. D.; Zou, X. M.; Wu, S. T.; Wan, D.; Cao, A. Y.; Liao, L.; Yuan, Q.; Duan, X. F. Ultrafine graphene nanomesh with large on/off ratio for high-performance flexible biosensors. Adv. Funct. Mater. 2017, 27, 1604096.

    Article  Google Scholar 

  19. Yang, Y. B.; Yang, X. D.; Tan, Y. N.; Yuan, Q. Recent progress in flexible and wearable bio-electronics based on nanomaterials. Nano Res. 2017, 10, 1560–1583.

    Article  Google Scholar 

  20. Bergveld, P. Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans. Biomed. Eng. 1970, 17, 70–71.

    Article  Google Scholar 

  21. Pregl, S.; Heinzig, A.; Baraban, L.; Cuniberti, G.; Mikolajick, T.; Weber, W. M. Printable parallel arrays of Si nanowire Schottky-barrier-FETs with tunable polarity for complementary logic. IEEE Trans. Nanotechnol. 2016, 15, 549–556.

    Article  Google Scholar 

  22. Baraban, L.; Zörgiebel, F.; Pahlke, C.; Baek, E.; Römhildt, L.; Cuniberti, G. Lab on a wire: Application of silicon nanowires for nanoscience and biotechnology. In Nanowire Field Effect Transistors: Principles and Applications; Kim, D. M.; Jeong, Y. H., Eds.; Springer: New York, 2014; pp 241–278.

    Chapter  Google Scholar 

  23. Pregl, S.; Weberk W. M.; Nozaki, D.; Kunstmann, J.; Baraban, B.; Opitz, J.; Mikolajick, T.; Cuniberti, G. Parallel arrays of Schottky barrier nanowire field effect transistors: Nanoscopic effects for macroscopic current output. Nano Res. 2013, 6, 381–388.

    Article  Google Scholar 

  24. Namdari, P.; Daraee, H.; Eatemadi, A. Recent advances in silicon nanowire biosensors: Synthesis methods, properties, and applications. Nanoscale Res. Lett. 2016, 11, 406.

    Article  Google Scholar 

  25. Shen, M. Y.; Li, B. R.; Li, Y. K. Silicon nanowire fieldeffect- transistor based biosensors: From sensitive to ultrasensitive. Biosens. Bioelectron. 2014, 60, 101–111.

    Article  Google Scholar 

  26. Stern, E.; Wagner, R.; Sigworth, F. J.; Breaker, R.; Fahmy, T. M.; Reed, M. A. Importance of the Debye screening length on nanowire field effect transistor sensors. Nano Lett. 2007, 7, 3405–3409.

    Article  Google Scholar 

  27. Gao, N.; Gao, T.; Yang, X.; Dai, X. C.; Zhou, W.; Zhang, A. Q.; Lieber, C. M. Specific detection of biomolecules in physiological solutions using graphene transistor biosensors. Proc. Natl. Acad. Sci. USA 2016, 113, 14633–14638.

    Article  Google Scholar 

  28. Presnova, G.; Presnov, D.; Krupenin, V; Grigorenko, V.; Trifonov, A.; Andreeva, I.; Ignatenko, O.; Egorov, A.; Rubtsova, M. Biosensor based on a silicon nanowire fieldeffect transistor functionalized by gold nanoparticles for the highly sensitive determination of prostate specific antigen. Biosens. Bioelectron. 2017, 88, 283–289.

    Article  Google Scholar 

  29. Krivitsky, V.; Zverzhinetsky, M.; Patolsky, F. Antigendissociation from antibody-modified nanotransistor sensor arrays as a direct biomarker detection method in unprocessed biosamples. Nano Lett. 2016, 16, 6272–6281.

    Article  Google Scholar 

  30. Ingebrandt, S. Bioelectronics: Sensing beyond the limit. Nat. Nanotechnol. 2015, 10, 734–735.

    Article  Google Scholar 

  31. Laborde, C.; Pittino, F.; Verhoeven, H. A.; Lemay, S. G.; Selmi, L.; Jongsma, M. A.; Widdershoven, F. P. Real-time imaging of microparticles and living cells with CMOS nanocapacitor arrays. Nat. Nanotechnol. 2015, 10, 791–795.

    Article  Google Scholar 

  32. Knopfmacher, O.; Tarasov, A.; Fu, W. Y.; Wipf, M.; Niesen, B.; Calame, M.; Schönenberger, C. Nernst limit in dual-gated Si-nanowire FET sensors. Nano Lett. 2010, 10, 2268–2274.

    Article  Google Scholar 

  33. Chua, L. O. Memristor—The missing circuit element. IEEE Trans. Circuit Theory 1971, 18, 507–519.

    Article  Google Scholar 

  34. Strukov, D. B.; Snider, G. S.; Stewart, D. R.; Williams, R. S. The missing memristor found. Nature 2008, 453, 80–83.

    Article  Google Scholar 

  35. Ascoli, A.; Slesazeck, S.; Mahne, H.; Tetzlaff, R.; Mikolajick, T. Nonlinear dynamics of a locally-active memristor. IEEE Trans. Circuits Syst. I Regul. Pap. 2015, 62, 1165–1174.

    Article  Google Scholar 

  36. Ascoli, A.; Tetzlaff, R.; Chua, L. O.; Strachan, J. P.; Williams, R. S. History erase effect in a non-volatile memristor. IEEE Trans. Circuits Syst. I Regul. Pap. 2016, 63, 389–400.

    Article  Google Scholar 

  37. Carrara, S.; Sacchetto, D.; Doucey, M. A.; Baj-Rossi, C.; De Micheli, G.; Leblebici, Y. Memristive-biosensors: A new detection method by using nanofabricated memristors. Sens. Actuators B Chem. 2012, 171–172, 449–457.

    Article  Google Scholar 

  38. Tzouvadaki, I.; Jolly, P.; Lu, X. L.; Ingebrandt, S.; de Micheli, G.; Estrela, P.; Carrara, S. Label-free ultrasensitive memristive aptasensor. Nano Lett. 2016, 16, 4472–4476.

    Article  Google Scholar 

  39. Chua, L. If it’s pinched it’s a memristor. In Memristors and Memristive Systems; Tetzlaff, R., Ed.; Springer: New York, 2014; pp 17–90.

    Chapter  Google Scholar 

  40. Puppo, F.; Dave, A.; Doucey, M. A.; Sacchetto, D.; Baj-Rossi, C.; Leblebici, Y.; De Micheli, G.; Carrara, S. Memristive biosensors under varying humidity conditions. IEEE Trans. NanoBioscience 2014, 13, 19–30.

    Article  Google Scholar 

  41. Tzouvadaki, I.; Lu, X.; De Micheli, G.; Ingebrandt, S.; Carrara, S. Nano-fabricated memristive biosensors for biomedical applications with liquid and dried samples. In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, USA, 2016, pp 295–298.

    Google Scholar 

  42. Goodchild, S. A.; Dooley, H.; Schoepp, R. J.; Flajnik, M.; Lonsdale, S. G. Isolation and characterisation of Ebolavirusspecific recombinant antibody fragments from murine and shark immune libraries. Mol. Immunol. 2011, 48, 2027–2037.

    Article  Google Scholar 

  43. Lucht, A.; Grunow, R.; Möller, P.; Feldmann, H.; Becker, S. Development, characterization and use of monoclonal VP40-antibodies for the detection of Ebola virus. J. Virol. Methods 2003, 111, 21–28.

    Article  Google Scholar 

  44. Yanik, A. A.; Huang, M.; Kamohara, O.; Artar, A.; Geisbert, T. M.; Connor, J. H.; Altug, H. An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media. Nano Lett. 2010, 10, 4962–4969.

    Article  Google Scholar 

  45. Baca, J. T.; Severns, V.; Lovato, D.; Branch, D. W.; Larson, R. S. Rapid detection of Ebola virus with a reagent-free, point-of-care biosensor. Sensors 2015, 15, 8605–8614.

    Article  Google Scholar 

  46. Tsang, M. K.; Ye, W. W.; Wang, G. J.; Li, J. M.; Yang, M.; Hao, J. H. Ultrasensitive detection of Ebola virus oligonucleotide based on upconversion nanoprobe/nanoporous membrane system. ACS Nano 2016, 10, 598–605.

    Article  Google Scholar 

  47. Elliott, L. H.; Kiley, M. P.; McCormick, J. B. Descriptive analysis of Ebola virus proteins. Virology 1985, 147, 169–176.

    Article  Google Scholar 

  48. Rim, T.; Kim, K.; Kim, S.; Baek, C. K.; Meyyappan, M.; Jeong, Y. H.; Lee, J. S. Improved electrical characteristics of honeycomb nanowire ISFETs. IEEE Electron Device Lett. 2013, 34, 1059–1061.

    Article  Google Scholar 

  49. Rim, T.; Meyyappan, M.; Baek, C. K. Optimized operation of silicon nanowire field effect transistor sensors. Nanotechnology 2014, 25, 505501.

    Article  Google Scholar 

  50. Marples, R. R.; Wieneke, A. A. Enterotoxins and toxic-shock syndrome toxin-1 in non-enteric staphylococcal disease. Epidemiol. Infect. 1993, 110, 477–488.

    Article  Google Scholar 

  51. Kim, K.; Park, C.; Kwon, D.; Kim, D.; Meyyappan, M.; Jeon, S.; Lee, J. S. Silicon nanowire biosensors for detection of cardiac troponin I (cTnI) with high sensitivity. Biosens. Bioelectron. 2016, 77, 695–701.

    Article  Google Scholar 

  52. Kaushik, A.; Tiwari, S.; Dev Jayant, R.; Marty, A.; Nair, M. Towards detection and diagnosis of Ebola virus disease at point-of-care. Biosens. Bioelectron. 2016, 75, 254–272.

    Article  Google Scholar 

  53. Rossi, C. A.; Kearney, B. J.; Olschner, S. P.; Williams, P. L.; Robinson, C. G.; Heinrich, M. L.; Zovanyi, A. M.; Ingram, M. F.; Norwood, D. A.; Schoepp, R. J. Evaluation of ViroCyt® virus counter for rapid filovirus quantitation. Viruses 2015, 7, 857–872.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financed via the German Research Foundation (DFG) within the Cluster of Excellence “Center for Advancing Electronics Dresden (CfAED) EXC 1056” and the “ICT Consilience Creative Program” (No. IITP-R0346-16-1007) supervised by the Institute for Information and Communications Technology Promotion (IITP), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bergoi Ibarlucea or Larysa Baraban.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibarlucea, B., Fawzul Akbar, T., Kim, K. et al. Ultrasensitive detection of Ebola matrix protein in a memristor mode. Nano Res. 11, 1057–1068 (2018). https://doi.org/10.1007/s12274-017-1720-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1720-2

Keywords