Skip to main content
Log in

Ultrasound-triggered release of sinoporphyrin sodium from liposome-microbubble complexes and its enhanced sonodynamic toxicity in breast cancer

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Applying ultrasound (US) to drug delivery and disease therapy is important work. Sonodynamic therapy (SDT)—a comprehensive therapy using US and a sonosensitizer—exhibits antineoplastic activity in many tumors. In this study, we investigated the feasibility of using a new sonosensitizer (sinoporphyrin sodium, DVDMS) loaded into liposome–microbubble complexes (DLMBs) as a possible candidate to enhance SDT against breast cancer. DLMBs were synthesized via the biotin–avidin linkage and confirmed to have good US response. US-induced cavitation played a key role to trigger a boosted payload release from DLMBs and improve the cellular uptake and intratumoral diffusion of DVDMS to realize better SDT effect. The combination of DLMBs and US treatment resulted in significant changes to cell morphology, mitochondria damage, and cell apoptosis in vitro. In vivo, the combined treatment markedly inhibited tumor growth, which appeared to result from increased apoptosis and reduced proliferation activity. The significant increase in the antitumor effect of DLMBs plus US suggests their potential use as a new approach to promote the killing activity of SDT against breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wood, A. K. W.; Sehgal, C. M. A review of low-intensity ultrasound for cancer therapy. Ultrasound Med. Biol. 2015, 41, 905–928.

    Article  Google Scholar 

  2. Antonelli, A.; Sfara, C.; Magnani, M. Intravascular contrast agents in diagnostic applications: Use of red blood cells to improve the lifespan and efficacy of blood pool contrast agents. Nano Res. 2017, 10, 731–766.

    Article  Google Scholar 

  3. Di, J.; Yu, J. C.; Wang, Q.; Yao S. S.; Suo, D. J.; Ye, Y. Q.; Pless, M.; Zhu, Y.; Jing, Y.; Gu, Z. Ultrasound-triggered noninvasive regulation of blood glucose levels using microgels integrated with insulin nanocapsules. Nano Res. 2017, 10, 1393–1402.

    Article  Google Scholar 

  4. McHale, A. P.; Callan, J. F.; Nomikou, N.; Fowley, C.; Callan, B. Sonodynamic therapy: Concept, mechanism and application to cancer treatment. In Therapeutic Ultrasound; Escoffre, J. M.; Bouakaz, A., Eds.; Springer International Publishing: Switzerland, 2016; pp 429–450.

    Chapter  Google Scholar 

  5. Trendowski, M. The promise of sonodynamic therapy. Cancer Metastasis Rev. 2014, 33, 143–160.

    Article  Google Scholar 

  6. Lv, Y. H.; Zheng, J. H.; Zhou, Q.; Jia, L. M.; Wang, C. Y.; Liu, N. A.; Zhao, H.; Ji, H.; Li, B. X.; Cao, W. W. Antiproliferative and apoptosis-inducing effect of exoprotoporphyrin IX based sonodynamic therapy on human oral squamous cell carcinoma. Sci. Rep. 2017, 7, 40967.

    Article  Google Scholar 

  7. Sun, H. Z.; Ge, W. J; Gao, X.; Wang, S. S.; Jiang, S. J.; Hu, Y.; Yu, M.; Hu, S. S. Apoptosis-promoting effects of hematoporphyrin monomethyl ether-sonodynamic therapy (HMME-SDT) on endometrial cancer. PLoS One 2015, 10, e0137980.

    Article  Google Scholar 

  8. Inui, T.; Amitani, H.; Kubo, K.; Kuchiike, D.; Uto, Y.; Nishikata, T.; Mette, M. Case report: A non-small cell lung cancer patient treated with GcMAF, sonodynamic therapy and tumor treating fields. Anticancer Res. 2016, 36, 3767–3770.

    Google Scholar 

  9. Jia, Y. L.; Wang, X. B.; Liu, Q. H.; Leung, A. W.; Wang, P.; Xu, C. S. Sonodynamic action of hypocrellin B triggers cell apoptoisis of breast cancer cells involving caspase pathway. Ultrasonics 2017, 73, 154–161.

    Article  Google Scholar 

  10. Li, Y. X.; Wang, P.; Wang, X. B.; Su, X. M.; Liu, Q. H. Involvement of mitochondrial and reactive oxygen species in the sonodynamic toxicity of chlorin e6 in human leukemia K562 cells. Ultrasound Med. Biol. 2014, 40, 990–1000.

    Article  Google Scholar 

  11. Wang, X. J.; Mitchell, D.; Lewis, T. J. Primary clinical use of sonodynamic therapy (SDT) for advanced breast cancer. J. Clin. Oncol. 2008, 26, 12029.

    Article  Google Scholar 

  12. Huang, P.; Qian, X. Q.; Chen, Y.; Yu, L. D.; Lin, H.; Wang, L. Y.; Zhu, Y. F.; Shi, J. L. Metalloporphyrin-encapsulated biodegradable nanosystems for highly efficient magnetic resonance imaging-guided sonodynamic cancer therapy. J. Am. Chem. Soc. 2017, 139, 1275–1284.

    Article  Google Scholar 

  13. Deepagan, V. G.; You, D. G.; Um, W.; Ko, H.; Kwon, S.; Choi, K. Y.; Yi, G. R.; Lee, J. Y.; Lee, D. S.; Kim, K. et al. Long-circulating Au-TiO2 nanocomposite as a sonosensitizer for ROS-mediated eradication of cancer. Nano Lett. 2016, 16, 6257–6264.

    Article  Google Scholar 

  14. Wang, H. P.; Wang, P.; Li, L.; Zhang, K.; Wang, X. B.; Liu, Q. H. Microbubbles enhance the antitumor effects of sinoporphyrin sodium mediated sonodynamic therapy both in vitro and in vivo. Int. J. Biol. Sci. 2015, 11, 1401–1409.

    Article  Google Scholar 

  15. McEwan, C.; Kamila, S.; Owen, J.; Nesbitt, H.; Callan, B.; Borden, M.; Nomikou, N.; Hamoudi, R. A.; Taylor, M. A.; Stride, E. et al. Combined sonodynamic and antimetabolite therapy for the improved treatment of pancreatic cancer using oxygen loaded microbubbles as a delivery vehicle. Biomaterials 2016, 80, 20–32.

    Article  Google Scholar 

  16. McEwan, C.; Fowley, C.; Nomikou, N.; McCaughan, B.; McHale, A. P.; Callan, J. F. Polymeric microbubbles as delivery vehicles for sensitizers in sonodynamic therapy. Langmuir 2014, 30, 14926–14930.

    Article  Google Scholar 

  17. Chen, H.; Hwang, J. H. Ultrasound-targeted microbubble destruction for chemotherapeutic drug delivery to solid tumors. J. Ther. Ultrasound 2013, 1, 10.

    Article  Google Scholar 

  18. Fu, Z. W.; Popov, V. Parametric study of acoustically-driven microbubble cavitations in a sonochemical reactor. Ultrason. Sonochem. 2014, 21, 415–427.

    Article  Google Scholar 

  19. Yoon, Y. I.; Kwon, Y. S.; Cho, H. S.; Heo, S. H.; Park, K. S.; Park, S. G.; Lee, S. H.; Hwang, S. I.; Kim, Y. I.; Jae, H. J. et al. Ultrasound-mediated gene and drug delivery using a microbubble-liposome particle system. Theranostics 2014, 4, 1133–1144.

    Article  Google Scholar 

  20. Ibsen, S.; Schutt, C. E.; Esener, S. Microbubble-mediated ultrasound therapy: A review of its potential in cancer treatment. Drug Des. Devel. Ther. 2013, 7, 375–388.

    Article  Google Scholar 

  21. Wang, Q. X.; Manmi, K.; Liu, K. K. Cell mechanics in biomedical cavitation. Interface Focus 2015, 5, 20150018.

    Article  Google Scholar 

  22. Zhang, L.; Sun, Z. X.; Ren, P. P.; You, M. J.; Zhang, J.; Fang, L. Y.; Wang, J.; Chen, Y. H.; Yan, F.; Zheng, H. R. et al. Localized delivery of shRNA against PHD2 protects the heart from acute myocardial infarction through ultrasoundtargeted cationic microbubble destruction. Theranostics 2017, 7, 51–66.

    Article  Google Scholar 

  23. Dewitte, H.; Vanderperren, K.; Haers, H.; Stock, E.; Duchateau, L.; Hesta, M.; Saunders, J. H.; De Smedt, S. C.; Lentacker, I. Theranostic mRNA-loaded microbubbles in the lymphatics of dogs: Implications for drug delivery. Theranostics 2015, 5, 97–109.

    Article  Google Scholar 

  24. Kheirolomoom, A.; Dayton, P. A.; Lum, A. F. H.; Little, E.; Paoli, E. E.; Zheng, H. R.; Ferrara, K. W. Acoustically-active microbubbles conjugated to liposomes: Characterization of a proposed drug delivery vehicle. J. Control. Release 2007, 118, 275–284.

    Article  Google Scholar 

  25. Geers, B.; Lentacker, I.; Sanders, N. N.; Demeester, J.; Meairs, S.; De Smedt, S. C. Self-assembled liposome-loaded microbubbles: The missing link for safe and efficient ultrasound triggered drug-delivery. J. Control. Release 2011, 152, 249–256.

    Article  Google Scholar 

  26. Deng, Z. T.; Yan, F.; Jin, Q. F.; Li, F.; Wu, J. R.; Liu, X.; Zheng, H. R. Reversal of multidrug resistance phenotype in human breast cancer cells using doxorubicin-liposomemicrobubble complexes assisted by ultrasound. J. Control. Release 2014, 174, 109–116.

    Article  Google Scholar 

  27. Zhu, X.; Guo, J.; He, C. C.; Geng, H. X.; Yu, G. S.; Li, J. Q.; Zheng, H. R.; Ji, X. J.; Yan, F. Ultrasound triggered image-guided drug delivery to inhibit vascular reconstruction via paclitaxel-loaded microbubbles. Sci. Rep. 2016, 6, 21683.

    Article  Google Scholar 

  28. Fang, Q.; Yang, D. A porphyrin dimer salt combined with the ether bond and its manufacturing method. China Patent ZL200910179116.5, Aug 29, 2012.

    Google Scholar 

  29. Wang, X. B.; Hu, J. M.; Wang, P.; Zhang, S. L.; Liu, Y. C.; Xiong, W. L.; Liu, Q. H. Analysis of the in vivo and in vitro effects of photodynamic therapy on breast cancer by using a sensitizer, sinoporphyrin sodium. Theranostics 2015, 5, 772–786.

    Article  Google Scholar 

  30. Yan, X. F.; Hu, H.; Lin, J.; Jin, A. J.; Niu, G.; Zhang, S. L.; Huang, P.; Shen, B. Z.; Chen, X. Y. Optical and photoacoustic dual-modality imaging guided synergistic photodynamic/photothermal therapies. Nanoscale 2015, 7, 2520–2526.

    Article  Google Scholar 

  31. Yan, X. F.; Niu, G.; Lin, J.; Jin, A. J.; Hu, H.; Tang, Y. X.; Zhang, Y. J.; Wu, A. G.; Lu, J.; Zhang, S. L. et al. Enhanced fluorescence imaging guided photodynamic therapy of sinoporphyrin sodium loaded graphene oxide. Biomaterials 2015, 42, 94–102.

    Article  Google Scholar 

  32. Xiong, W. L.; Wang, P.; Hu, J. M.; Jia, Y. L.; Wu, L. J.; Chen, X. Y.; Liu, Q. H.; Wang, X. B. A new sensitizer DVDMS combined with multiple focused ultrasound treatments: An effective antitumor strategy. Sci. Rep. 2015, 5, 17485.

    Article  Google Scholar 

  33. Li, C. F.; Zhang, K.; Wang, P.; Hu, J. M.; Liu, Q. H.; Wang, X. B. Sonodynamic antitumor effect of a novel sonosensitizer on S180 solid tumor. Biopharm. Drug Dispos. 2014, 35, 50–59.

    Article  Google Scholar 

  34. Li, Y. X.; Wang, P.; Chen, X. Y.; Hu, J. M.; Liu, Y. C.; Wang, X. B.; Liu, Q. H. Activation of microbubbles by low-intensity pulsed ultrasound enhances the cytotoxicity of curcumin involving apoptosis induction and cell motility inhibition in human breast cancer MDA-MB-231 cells. Ultrason. Sonochem. 2016, 33, 26–36.

    Article  Google Scholar 

  35. Mihaljević, B.; Katušin-Ražem, B.; Ražem, D. The reevaluation of the ferric thiocyanate assay for lipid hydroperoxides with special considerations of the mechanistic aspects of the response. Free Radic. Biol. Med. 1996, 21, 53–63.

    Article  Google Scholar 

  36. Jia, Y. L.; Yuan, W. J.; Zhang, K.; Wang, J.; Wang, P.; Liu, Q. H.; Wang, X. B. Comparison of cell membrane damage induced by the therapeutic ultrasound on human breast cancer MCF-7 and MCF-7/ADR cells. Ultrason. Sonochem. 2015, 26, 128–135.

    Article  Google Scholar 

  37. Pulaski, B. A.; Terman, D. S.; Khan, S.; Muller, E.; Ostrand- Rosenberg, S. Cooperativity of Staphylococcal aureus enterotoxin B superantigen, major histocompatibility complex class II, and CD80 for immunotherapy of advanced spontaneous metastases in a clinically relevant postoperative mouse breast cancer model. Cancer Res. 2000, 60, 2710–2715.

    Google Scholar 

  38. Lentacker, I.; Geers, B.; Demeester, J.; De Smedt, S. C.; Sanders, N. N. Design and evaluation of doxorubicincontaining microbubbles for ultrasound-triggered doxorubicin delivery: Cytotoxicity and mechanisms involved. Mol. Ther. 2010, 18, 101–108.

    Article  Google Scholar 

  39. Yan, F.; Li, L.; Deng, Z. T.; Jin, Q. F.; Chen, J. J.; Yang, W.; Yeh, C. K.; Wu, J. R.; Shandas, R.; Liu, X. et al. Paclitaxelliposome–microbubble complexes as ultrasound-triggered therapeutic drug delivery carriers. J. Control. Release 2013, 166, 246–255.

    Article  Google Scholar 

  40. Emmer, M.; van Wamel, A.; Goertz, D. E.; de Jong, N. The onset of microbubble vibration. Ultrasound Med. Biol. 2007, 33, 941–949.

    Article  Google Scholar 

  41. McLaughlan, J. R.; Harput, S.; Abou-Saleh, R. H.; Peyman, S. A.; Evans, S.; Freear, S. Characterisation of liposomeloaded microbubble populations for subharmonic imaging. Ultrasound Med. Biol. 2017, 43, 346–356.

    Article  Google Scholar 

  42. Wang, P.; Wang, X. B.; Zhang, K.; Gao, K. L.; Song, M.; Liu, Q. H. The spectroscopy analyses of PpIX by ultrasound irradiation and its sonotoxicity in vitro. Ultrasonics 2013, 53, 935–942.

    Article  Google Scholar 

  43. Yang, S.; Wang, P.; Wang, X. B.; Su, X. M.; Liu, Q. H. Activation of microbubbles by low-level therapeutic ultrasound enhances the antitumor effects of doxorubicin. Eur. Radiol. 2014, 24, 2739–2753.

    Article  Google Scholar 

  44. Sennoga, C. A.; Kanbar, E.; Auboire, L.; Dujardin, P. A.; Fouan, D.; Escoffre, J. M.; Bouakaz, A. Microbubblemediated ultrasound drug-delivery and therapeutic monitoring. Expert Opin. Drug Deliv. 2016, 11, 1–13.

    Article  Google Scholar 

  45. Qin, J. L.; Wang, T. Y.; Willmann, J. K. Sonoporation: Applications for cancer therapy. In Therapeutic Ultrasound; Escoffre, J. M.; Bouakaz, A., Eds.; Springer International Publishing: Switzerland, 2016; pp 263–291.

    Chapter  Google Scholar 

  46. Meijering, B. D. M.; Juffermans, L. J. M.; van Wamel, A.; Henning, R. H.; Zuhorn, I. S.; Emmer, M.; Versteilen, A. M. G.; Paulus, V. W. J.; van Gilst, W. H.; Kooiman, K. et al. Ultrasound and microbubble-targeted delivery of macromolecules is regulated by induction of endocytosis and pore formation. Circ. Res. 2009, 104, 679–687.

    Article  Google Scholar 

  47. Wang, H. P.; Wang, X. B.; Zhang, S. L.; Wang, P.; Zhang, K.; Liu, Q. H. Sinoporphyrin sodium, a novel sensitizer, triggers mitochondrial-dependent apoptosis in ECA-109 cells via production of reactive oxygen species. Int. J. Nanomedicine 2014, 9, 3077–3090.

    Article  Google Scholar 

  48. Theek, B.; Baues, M.; Ojha, T.; Möckel, D.; Veettil, S. K.; Steitz, J.; van Bloois, L.; Storm, G.; Kiessling, F.; Lammers, T. Sonoporation enhances liposome accumulation and penetration in tumors with low EPR. J. Control. Release 2016, 231, 77–85.

    Article  Google Scholar 

  49. Luo, T. T.; Sun, J. C.; Zhu, S. Y.; He, J.; Hao, L.; Xiao, L. L.; Zhu, Y.; Wang, Q. Q.; Pan, X.; Wang, Z. G. et al. Ultrasound-mediated destruction of oxygen and paclitaxel loaded dual-targeting microbubbles for intraperitoneal treatment of ovarian cancer xenografts. Cancer Lett. 2017, 391, 1–11.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 81472846 and 81571834), the China Postdoctoral Science Foundation (No. 2016M600684), the Fundamental Research Funds for the Central Universities (No. GK201602003), and the Natural Science Foundation of Shaanxi Province (No. 2017JM8004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pan Wang or Quanhong Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., An, H., Wang, X. et al. Ultrasound-triggered release of sinoporphyrin sodium from liposome-microbubble complexes and its enhanced sonodynamic toxicity in breast cancer. Nano Res. 11, 1038–1056 (2018). https://doi.org/10.1007/s12274-017-1719-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1719-8

Keywords

Navigation