Skip to main content
Log in

Water-soluble-template-derived nanoscale silicon nanoflake and nano-rod morphologies: Stable architectures for lithium-ion battery anodes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Earth abundant and economical rock salt (NaCl) particles of different sizes (<3 μm and 5–20 μm) prepared by high energy mechanical milling were used as water-soluble templates for generation of Si with novel nanoscale architectures via low pressure chemical vapor deposition (LPCVD). Si nanoflakes (SiNF) comprising largely amorphous Si (a-Si) with a small volume fraction of nanocrystalline Si (nc-Si), and Si nanorods (SiNR) composed of a larger volume fraction of crystalline Si (c-Si) and a small volume fraction of a-Si resulted from modification of the NaCl crystals. SiNF yielded first-cycle discharge and charge capacities of ∼2,830 and 2,175 mAh·g−1, respectively, at a current rate of 50 mA·g−1 with a first-cycle irreversible loss (FIR loss) of ∼15%–20%. SiNR displayed first-cycle discharge and charge capacities of ∼2,980 and ∼2,500 mAh·g−1, respectively, at a current rate of 50 mA·g−1 with an FIR loss of ∼12%–15%. However, at a current rate of 1 A·g−1, SiNF exhibited a stable discharge capacity of ∼810 mAh·g−1 at the end of 250 cycles with a fade rate of ∼0.11% loss per cycle, while SiNR showed a stable specific discharge capacity of ∼740 mAh·g−1 with a fade rate of ∼0.23% loss per cycle. The morphology of the nanostructures and compositions of the different phases/phase of Si influence the performance of SiNF and SiNR, making them attractive anodes for lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

    Article  Google Scholar 

  2. Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35.

    Article  Google Scholar 

  3. Cui, L.-F.; Ruffo, R.; Chan, C. K.; Peng, H. L.; Cui, Y. Crystalline-amorphous core−shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett. 2009, 9, 491–495.

    Article  Google Scholar 

  4. Epur, R.; Datta, M. K.; Kumta, P. N. Nanoscale engineered electrochemically active silicon–CNT heterostructures—Novel anodes for Li-ion application. Electrochim. Acta 2012, 85, 680–684.

    Article  Google Scholar 

  5. Wang, W.; Epur, R.; Kumta, P. N. Vertically aligned silicon/carbon nanotube (VASCNT) arrays: Hierarchical anodes for lithium-ion battery. Electrochem. Commun. 2011, 13, 429–432.

    Article  Google Scholar 

  6. Wang, W.; Kumta, P. N. Nanostructured hybrid silicon/carbon nanotube heterostructures: Reversible high-capacity lithiumion anodes. ACS Nano 2010, 4, 2233–2241.

    Article  Google Scholar 

  7. Evanoff, K.; Benson, J.; Schauer, M.; Kovalenko, I.; Lashmore, D.; Ready, W. J.; Yushin, G. Ultra strong silicon-coated carbon nanotube nonwoven fabric as a multifunctional lithium-ion battery anode. ACS Nano 2012, 6, 9837–9845.

    Article  Google Scholar 

  8. David, L.; Asok, D.; Singh, G. Synthesis and extreme rate capability of Si–Al–C–N functionalized carbon nanotube spray-on coatings as Li-ion battery electrode. ACS Appl. Mater. Interfaces 2014, 6, 16056–16064.

    Article  Google Scholar 

  9. Yao, Y.; McDowell, M. T.; Ryu, I.; Wu, H.; Liu, N.; Hu, L. B.; Nix, W. D.; Cui, Y. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett. 2011, 11, 2949–2954.

    Article  Google Scholar 

  10. Wu, H.; Chan, G.; Choi, J. W.; Ryu, I.; Yao, Y.; McDowell, M. T.; Lee, S. W.; Jackson, A.; Yang, Y.; Hu, L. B.; Cui, Y. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol. 2012, 7, 310–315.

    Article  Google Scholar 

  11. Song, T.; Xia, J. L.; Lee, J.-H.; Lee, D. H.; Kwon, M.-S.; Choi, J.-M.; Wu, J.; Doo, S. K.; Chang, H.; Park, W. I. et al. Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. Nano Lett. 2010, 10, 1710–1716.

    Article  Google Scholar 

  12. Park, M.-H.; Kim, M. G.; Joo, J.; Kim, K.; Kim, J.; Ahn, S.; Cui, Y.; Cho, J. Silicon nanotube battery anodes. Nano Lett. 2009, 9, 3844–3847.

    Article  Google Scholar 

  13. Lu, Z. Z.; Wong, T.; Ng, T.-W.; Wang, C. D. Facile synthesis of carbon decorated silicon nanotube arrays as anode material for high-performance lithium-ion batteries. RSC Adv. 2014, 4, 2440–2446.

    Article  Google Scholar 

  14. Xu, C. X.; Hao, Q.; Zhao, D. Y. Facile fabrication of a nanoporous Si/Cu composite and its application as a high-performance anode in lithium-ion batteries. Nano Res. 2016, 9, 908–916.

    Article  Google Scholar 

  15. Xu, K. Q.; Ben, L. B.; Li, H.; Huang, X. J. Silicon-based nanosheets synthesized by a topochemical reaction for use as anodes for lithium ion batteries. Nano Res. 2015, 8, 2654–2662.

    Article  Google Scholar 

  16. Choi, S. H.; Kang, Y. C. Enhanced Li+ storage properties of few-layered MoS2-C composite microspheres embedded with Si nanopowder. Nano Res. 2015, 8, 2492–2502.

    Article  Google Scholar 

  17. McSweeney, W.; Geaney, H.; O'Dwyer, C. Metal-assisted chemical etching of silicon and the behavior of nanoscale silicon materials as Li-ion battery anodes. Nano Res. 2015, 8, 1395–1442.

    Article  Google Scholar 

  18. Liang, J. W.; Li, X. N.; Zhu, Y. C.; Guo, C.; Qian, Y. T. Hydrothermal synthesis of nano-silicon from a silica sol and its use in lithium ion batteries. Nano Res. 2015, 8, 1497–1504.

    Article  Google Scholar 

  19. Ge, M. Y.; Rong, J. P.; Fang, X.; Zhang, A. Y.; Lu, Y. H.; Zhou, C. W. Scalable preparation of porous silicon nanoparticles and their application for lithium-ion battery anodes. Nano Res. 2013, 6, 174–181.

    Article  Google Scholar 

  20. Chen, S. Q.; Bao, P. T.; Huang, X. D.; Sun, B.; Wang, G. X. Hierarchical 3D mesoporous silicon@graphene nanoarchitectures for lithium ion batteries with superior performance. Nano Res. 2014, 7, 85–94.

    Article  Google Scholar 

  21. Zhou, X. S.; Cao, A. M.; Wan, L. J.; Guo, Y. G. Spin-coated silicon nanoparticle/graphene electrode as a binder-free anode for high-performance lithium-ion batteries. Nano Res. 2012, 5, 845–853.

    Article  Google Scholar 

  22. Rong, J. P.; Fang, X.; Ge, M. Y.; Chen, H. T.; Xu, J.; Zhou, C. W. Coaxial Si/anodic titanium oxide/Si nanotube arrays for lithium-ion battery anodes. Nano Res. 2013, 6, 182–190.

    Article  Google Scholar 

  23. Epur, R.; Hanumantha, P. J.; Datta, M. K.; Hong, D.; Gattu, B.; Kumta, P. N. A simple and scalable approach to hollow silicon nanotube (h-SiNT) anode architectures of superior electrochemical stability and reversible capacity. J. Mater. Chem. A 2015, 3, 11117–11129.

    Article  Google Scholar 

  24. Gattu, B.; Epur, R.; Jampani, P. H.; Kuruba, R.; Datta, M. K.; Kumta, P. N. Silicon-carbon core–shell hollow nanotubular configuration high-performance lithium-ion anodes. The J. Phys. Chem. C 2017, 121, 9662–9671.

    Article  Google Scholar 

  25. Wang, B. B.; Jin, P.; Yue, Y. Z.; Ji, S. D.; Li, Y. M.; Luo, H. J. Synthesis of NaCl single crystals with defined morphologies as templates for fabricating hollow nano/micro-structures. RSC Adv. 2015, 5, 5072–5076.

    Article  Google Scholar 

  26. Liu, R.; Yang, S. C.; Wang, F.; Lu, X. G.; Yang, Z. M.; Ding, B. J. Sodium chloride template synthesis of cubic tin dioxide hollow particles for lithium ion battery applications. ACS Appl. Mater. Interfaces 2012, 4, 1537–1542.

    Article  Google Scholar 

  27. Xiao, X.; Song, H. B.; Lin, S. Z.; Zhou, Y.; Zhan, X. J.; Hu, Z. M.; Zhang, Q.; Sun, J. Y.; Yang, B.; Li, T. Q. et al. Scalable salt-templated synthesis of two-dimensional transition metal oxides. Nat. Commun. 2016, 7, 11296.

    Article  Google Scholar 

  28. Fan, X.; Jiang, X. P.; Wang, W.; Liu, Z. P. Green synthesis of nanoporous Si/C anode using NaCl template with improved cycle life. Mater. Lett. 2016, 180, 109–113.

    Article  Google Scholar 

  29. Grass, R. N.; Stark, W. J. Flame synthesis of calcium-, strontium-, barium fluoride nanoparticles and sodium chloride. Chem. Commun. 2005, 1767–1769.

    Google Scholar 

  30. Halim, S. C. Application of reactive and partly soluble nanomaterials. Ph.D. Dissertation, Eth Zurich, Zürich, 2008.

    Google Scholar 

  31. Scholz, S. M.; Dutta, J.; Hofmann, H.; Hofmeister, H. Raman spectroscopic study of silicon nanopowders. J. Mater. Sci. Technol. 1997, 13, 327–332.

    Article  Google Scholar 

  32. Vink, R. L. C.; Barkema, G. T.; van der Weg, W. F. Raman spectra and structure of amorphous Si. Phys. Rev. B 2001, 63, 115210.

    Article  Google Scholar 

  33. Parker Jr, J. H.; Feldman, D. W.; Ashkin, M. Raman scattering by silicon and germanium. Phys. Rev. 1967, 155, 712–714.

    Article  Google Scholar 

  34. Smit, C.; van Swaaij, R. A. C. M. M.; Donker, H.; Petit, A. M. H. N.; Kessels, W. M. M.; van de Sanden, M. C. M. Determining the material structure of microcrystalline silicon from Raman spectra. J. Appl. Phys. 2003, 94, 3582–3588.

    Article  Google Scholar 

  35. Datta, M. K.; Maranchi, J.; Chung, S. J.; Epur, R.; Kadakia, K.; Jampani, P.; Kumta, P. N. Amorphous silicon–carbon based nano-scale thin film anode materials for lithium ion batteries. Electrochim. Acta 2011, 56, 4717–4723.

    Article  Google Scholar 

  36. Epur, R.; Ramanathan, M.; Beck, F. R.; Manivannan, A.; Kumta, P. N. Electrodeposition of amorphous silicon anode for lithium ion batteries. Mater. Sci. Eng. B 2012, 177, 1157–1162.

    Article  Google Scholar 

  37. Epur, R.; Minardi, L.; Datta, M. K.; Chung, S. J.; Kumta, P. N. A simple facile approach to large scale synthesis of high specific surface area silicon nanoparticles. J. Solid State Chem. 2013, 208, 93–98.

    Article  Google Scholar 

  38. Breaux, G. A.; Benirschke, R. C.; Jarrold, M. F. Melting, freezing, sublimation, and phase coexistence in sodium chloride nanocrystals. J. Chem. Phys. 2004, 121, 6502–6507.

    Article  Google Scholar 

  39. Kana, N.; Khamlich, S.; Kana, J. B. K.; Maaza, M. Peculiar surface size-effects in nacl nano-crystals. Surf. Rev. Lett. 2013, 20, 1350001.

    Article  Google Scholar 

  40. Sang, L. V.; Huong, T. T. T.; Minh, L. N. T. Molecular dynamics simulations of the melting of KCl nanoparticles. Eur. Phys. J. D 2014, 68, 292.

    Article  Google Scholar 

  41. Sharma, S.; Sunkara, M. K. Direct synthesis of singlecrystalline silicon nanowires using molten gallium and silane plasma. Nanotechnology 2004, 15, 130–134.

    Article  Google Scholar 

  42. Chen, L.; Lu, W.; Lieber, C. M. Semiconductor nanowire growth and integration. In Semiconductor Nanowires: From Next-Generation Electronics to Sustainable Energy; Wei, L.; Jie, X., Eds.; The Royal Society of Chemistry: Cambridge, UK, 2015; pp 1–53.

    Google Scholar 

  43. Choi, H.-J. Vapor–liquid–solid growth of semiconductor nanowires. In Semiconductor Nanostructures for Optoelectronic Devices: Processing, Characterization and Applications; Yi, G.-C., Ed.; Springer: Berlin, Heidelberg, 2012; pp 1–36.

    Google Scholar 

  44. Schmidt, V. Silicon nanowires: Synthesis, fundamental issues, and a first device. Ph.D. Dissertation, The Martin Luther University, Halle-Wittenberg, 2006.

    Google Scholar 

  45. Conesa-Boj, S.; Dunand, S.; Russo-Averchi, E.; Heiss, M.; Ruffer, D.; Wyrsch, N.; Ballif, C.; Morral, A. F. I. Hybrid axial and radial Si-GaAs heterostructures in nanowires. Nanoscale 2013, 5, 9633–9639.

    Article  Google Scholar 

  46. Gattu, B.; Epur, R.; Datta, M. K.; Manivannan, A.; Kumta, P. N. Pulse electrodeposition of amorphous Si film anodes for Li-ion battery. In ECS Meeting Abstracts 2014, MA2014–01, 502, Orlando, FL, 2014.

    Google Scholar 

  47. Gattu, B.; Epur, R.; Shanti, P. M.; Jampani, P. H.; Kuruba, R.; Datta, M. K.; Manivannan, A.; Kumta, P. N. Pulsed current electrodeposition of silicon thin films anodes for lithium ion battery applications. Inorganics 2017, 5, 27.

    Article  Google Scholar 

  48. Obrovac, M. N.; Christensen, L. Structural changes in silicon anodes during lithium insertion/extraction. Electrochem. Solid-State Lett. 2004, 7, A93–A96.

    Article  Google Scholar 

  49. Xu, Q.; Li, J. Y.; Yin, Y. X.; Kong, Y. M.; Guo, Y. G.; Wan, L. J. Nano/micro-structured Si/C anodes with high initial coulombic efficiency in Li-Ion batteries. Chem.—Asian J. 2016, 11, 1205–1209.

    Article  Google Scholar 

  50. Wu, L. L.; Yang, J.; Zhou, X. Y.; Zhang, M. F.; Ren, Y. P.; Nie, Y. Silicon nanoparticles embedded in a porous carbon matrix as a high-performance anode for lithium-ion batteries. J. Mater. Chem. A 2016, 4, 11381–11387.

    Article  Google Scholar 

  51. Li, W. Y.; Tang, Y. B.; Kang, W. P.; Zhang, Z. Y.; Yang, X.; Zhu, Y.; Zhang, W. J.; Lee, C. S. Core–shell Si/C nanospheres embedded in bubble sheet-like carbon film with enhanced performance as lithium ion battery anodes. Small 2015, 11, 1345–1351.

    Article  Google Scholar 

  52. Zhang, Y. C.; You, Y.; Xin, S.; Yin, Y. X.; Zhang, J.; Wang, P.; Zheng, X. S.; Cao, F. F.; Guo, Y. G. Rice huskderived hierarchical silicon/nitrogen-doped carbon/carbon nanotube spheres as low-cost and high-capacity anodes for lithium-ion batteries. Nano Energy 2016, 25, 120–127.

    Article  Google Scholar 

  53. Yin, Y. X.; Xin, S.; Wan, L. J.; Li, C. J.; Guo, Y. G. Electrospray synthesis of silicon/carbon nanoporous microspheres as improved anode materials for lithium-ion batteries. J. Phys. Chem. C 2011, 115, 14148–14154.

    Article  Google Scholar 

  54. Xu, Q.; Li, J. Y.; Sun, J. K.; Yin, Y. X.; Wan, L. J.; Guo, Y. G. Watermelon-inspired Si/C microspheres with hierarchical buffer structures for densely compacted lithium-ion battery anodes. Adv. Energy Mater. 2017, 7, 1601481.

    Article  Google Scholar 

  55. Zhou, X. S.; Wan, L. J.; Guo, Y. G. Electrospun silicon nanoparticle/porous carbon hybrid nanofibers for lithium-ion batteries. Small 2013, 9, 2684–2688.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under Contract no. DE-AC02-05CH11231, subcontract no. 6951369, under the Batteries for Advanced Transportation Technologies (BATT) program. The authors also acknowledge the National Science Foundation (Nos. NSF-CBET-0933141 and NSF-CBET-1511390) and partial support of the Ford Foundation. Financial assistances from the Edward R. Weidlein Chair Professorship funds and the Center for Complex Engineered Materials (CCEMM) for partial support of this research are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant N. Kumta.

Electronic supplementary material

12274_2017_1707_MOESM1_ESM.pdf

Water-soluble-template-derived nanoscale silicon nanoflake and nano-rod morphologies: Stable architectures for lithium-ion battery anodes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gattu, B., Jampani, P.H., Datta, M.K. et al. Water-soluble-template-derived nanoscale silicon nanoflake and nano-rod morphologies: Stable architectures for lithium-ion battery anodes. Nano Res. 10, 4284–4297 (2017). https://doi.org/10.1007/s12274-017-1707-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1707-z

Keywords

Navigation