Construction of Pd-M (M = Ni, Ag, Cu) alloy surfaces for catalytic applications

Abstract

The fabrication of ultrathin alloy shells as heterogeneous catalysts to increase the utilization efficiency and enhance the catalytic activity of metal atoms has been recognized as an effective method for the construction of efficient metal nanocatalysts, particularly noble-metal nanocatalysts. In this study, we demonstrate the successful formation of Pd-M (M = Ni, Ag, Cu) alloy shells with a tunable thickness on preformed nanoscale Pd seeds. The success of this synthesis mainly relies on the combination of the slow reduction of “M” ions and the subsequent diffusion of M ad-atoms into the surface lattice of Pd seeds. The composition of the Pd-M alloy shell is easily tuned by changing the type and amount of the added precursor, and the shell thickness is manipulated according to the reaction time. More significantly, the surface structure of these alloy shells is maintained after the reaction, implying that any desired surface structure of Pd-M alloy shells can be prepared by using the appropriate starting materials. Further catalytic evaluation of the hydrogenation of chloronitrobenzenes shows that these alloy surfaces exhibit significantly improved selectivity compared to the Pd seeds. The Pd-Ni alloy surfaces exhibit much better catalytic selectivity (as high as > 99%) than Pd catalysts.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    Peterson, E. J.; DeLaRiva, A. T.; Lin, S.; Johnson, R. S.; Guo, H.; Miller, J. T.; Kwak, J. H.; Peden C. H. F.; Kiefer, B.; Allard, L. F. et al. Low-temperature carbon monoxide oxidation catalysed by regenerable atomically dispersed palladium on alumina. Nat. Commun. 2014, 5, 4885.

    Article  Google Scholar 

  2. [2]

    Mitsudome, T.; Takahashi, Y.; Ichikawa, S.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Metal-ligand core–shell nanocomposite catalysts for the selective semihydrogenation of alkynes. Angew. Chem. Int. Ed. 2013, 52, 1481–1485.

    Article  Google Scholar 

  3. [3]

    Kainz, Q. M.; Linhardt, R.; Grass, R. N.; Vilé, G.; Pérez-Ramírez, J.; Stark, W. J.; Reiser, O. Palladium nanoparticles supported on magnetic carbon-coated cobalt nanobeads: Highly active and recyclable catalysts for alkene hydrogenation. Adv. Funct. Mater. 2014, 24, 2020–2027.

    Article  Google Scholar 

  4. [4]

    Seechurn, C. C. C. J.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. Palladium-catalyzed cross-coupling: A historical contextual perspective to the 2010 Nobel Prize. Angew. Chem. Int. Ed. 2012, 51, 5062–5085.

    Article  Google Scholar 

  5. [5]

    Mäki-Arvela, P.; Hájek, J.; Salmi, T.; Murzin, D. Y. Chemoselective hydrogenation of carbonyl compounds over heterogeneous catalysts. Appl. Catal. A Gen. 2005, 292, 1–49.

    Article  Google Scholar 

  6. [6]

    Chan, C. W. A.; Mahadi, A. H.; Li, M. M. J.; Corbos, E. C.; Tang, C.; Jones, G.; Kuo, W. C. H.; Cookson, J.; Brown, C. M.; Bishop, P. T. et al. Interstitial modification of palladium nanoparticles with boron atoms as a green catalyst for selective hydrogenation. Nat. Commun. 2014, 5, 5787.

    Article  Google Scholar 

  7. [7]

    Jiang, L. C.; Gu, H. Z.; Xu, X. Z.; Yan, X. H. Selective hydrogenation of o-chloronitrobenzene (o-CNB) over supported Pt and Pd catalysts obtained by laser vaporization deposition of bulk metals. J. Mol. Catal. A 2009, 310, 144–149.

    Article  Google Scholar 

  8. [8]

    Sikhwivhilu, L. M.; Coville, N. J.; Pulimaddi, B. M.; Venkatreddy, J.; Vishwanathan, V. Selective hydrogenation of o-chloronitrobenzene over palladium supported nanotubular titanium dioxide derived catalysts. Catal. Commun. 2007, 8, 1999–2006.

    Article  Google Scholar 

  9. [9]

    Marshall, S. T.; O’Brien, M.; Oetter, B.; Corpuz, A.; Richards, R. M.; Schwartz, D. K.; Medlin, J. W. Controlled selectivity for palladium catalysts using self-assembled monolayers. Nat. Mater. 2010, 9, 853–858.

    Article  Google Scholar 

  10. [10]

    Chan, C. W. A.; Xie, Y. L.; Cailuo, N.; Yu, K. M. K.; Cookson, J.; Bishop, P.; Tsang, S. C. New environmentally friendly catalysts containing Pd-interstitial carbon made from Pd-glucose precursors for ultraselective hydrogenations in the liquid phase. Chem. Commun. 2011, 47, 7971–7973.

    Article  Google Scholar 

  11. [11]

    Kesavan, L.; Tiruvalam, R.; Rahim, M. H. A.; Saiman, M. I. B.; Enache, D. I.; Jenkins, R. L.; Dimitratos, N.; Lopez-Sanchez, J. A.; Taylor, S. H.; Knight, D. W. et al. Solventfree oxidation of primary carbon-hydrogen bonds in toluene using Au-Pd alloy nanoparticles. Science 2011, 331, 195–199.

    Article  Google Scholar 

  12. [12]

    Jin, M. S.; Liu, H. Y.; Zhang, H.; Xie, Z. X.; Liu, J. Y.; Xia, Y. N. Synthesis of Pd nanocrystals enclosed by {100} facets and with sizes <10 nm for application in CO oxidation. Nano Res. 2011, 4, 83–91.

    Article  Google Scholar 

  13. [13]

    Jin, M. S.; Zhang, H.; Xie, Z. X.; Xia, Y. N. Palladium nanocrystals enclosed by {100} and {111} facets in controlled proportions and their catalytic activities for formic acid oxidation. Energy Environ. Sci. 2012, 5, 6352–6357.

    Article  Google Scholar 

  14. [14]

    Jin, M. S.; Zhang, H.; Xie, Z. X.; Xia, Y. N. Palladium concave nanocubes with high-index facets and their enhanced catalytic properties. Angew. Chem. Int. Ed. 2011, 50, 7850–7854.

    Article  Google Scholar 

  15. [15]

    Zhang, Z. R.; Wang, Z. N.; Zhang, H.; Wang, C. Q.; Yin, Y. D.; Jin, M. S. Monitoring the shape evolution of Pd nanocubes to octahedra by PdS frame markers. Nanoscale 2014, 6, 3518–3521.

    Article  Google Scholar 

  16. [16]

    Zhang Z. R.; Wang, Z. N.; He, S. N.; Wang, C. Q.; Jin M. S.; Yin, Y. D. Redox reaction induced Ostwald ripening for size- and shape-focusing of palladium nanocrystals. Chem. Sci. 2015, 6, 5197–5203.

    Article  Google Scholar 

  17. [17]

    Cárdenas-Lizana, F.; Hao, Y. F.; Crespo-Quesada, M.; Yuranov, I.; Wang, X. D.; Keane, M. A.; Kiwi-Minsker, L. Selective gas phase hydrogenation of p-chloronitrobenzene over Pd catalysts: Role of the support. ACS Catal. 2013, 3, 1386–1396.

    Article  Google Scholar 

  18. [18]

    Zou, J. J.; Xiong, Z. Q.; Wang, L.; Zhang, X. W.; Mi, Z. T. Preparation of Pd-B/γ-Al2O3 amorphous catalyst for the hydrogenation of tricyclopentadiene. J. Mol. Catal. A 2007, 271, 209–215.

    Article  Google Scholar 

  19. [19]

    Niu, W. X.; Gao, Y. J.; Zhang, W. Q.; Yan, N.; Lu, X. M. Pd-Pb alloy nanocrystals with tailored composition for semihydrogenation: Taking advantage of catalyst poisoning. Angew. Chem. Int. Ed. 2015, 54, 8271–8274.

    Article  Google Scholar 

  20. [20]

    Chen, G. X.; Xu, C. F.; Huang, X. Q.; Ye, J. Y.; Gu, L.; Li, G.; Tang, Z. C.; Wu, B. H.; Yang, H. Y.; Zhao, Z. P. et al. Interfacial electronic effects control the reaction selectivity of platinum catalysts. Nat. Mater. 2016, 15, 564–569.

    Article  Google Scholar 

  21. [21]

    Habas, S. E.; Lee, H.; Radmilovic, V.; Somorjai, G. A.; Yang, P. D. Shaping binary metal nanocrystals through epitaxial seeded growth. Nat. Mater. 2007, 6, 692–697.

    Article  Google Scholar 

  22. [22]

    Xu, J.; White, T.; Li, P.; He, C. H.; Yu, J. G.; Yuan, W. K.; Han, Y. F. Biphasic Pd-Au alloy catalyst for low-temperature CO oxidation. J. Am. Chem. Soc. 2010, 132, 10398–10406.

    Article  Google Scholar 

  23. [23]

    Chen, A. C.; Holt-Hindle, P. Platinum-based nanostructured materials: Synthesis, properties, and applications. Chem. Rev. 2010, 110, 3767–3804.

    Article  Google Scholar 

  24. [24]

    Yin, A. X.; Min, X. Q.; Zhang, Y. W.; Yan, C. H. Shape-selective synthesis and facet-dependent enhanced electrocatalytic activity and durability of monodisperse Sub-10 nm Pt-Pd tetrahedrons and cubes. J. Am. Chem. Soc. 2011, 133, 3816–3819.

    Article  Google Scholar 

  25. [25]

    Zhang, L.; Zhang, J. W.; Kuang, Q.; Xie, S. F.; Jiang, Z. Y.; Xie, Z. X.; Zheng, L. S. Cu2+-assisted synthesis of hexoctahedral Au-Pd alloy nanocrystals with high-index facets. J. Am. Chem. Soc. 2011, 133, 17114–17117.

    Article  Google Scholar 

  26. [26]

    Huang, X. Q.; Li, Y. J.; Li, Y. J.; Zhou, H. L.; Duan, X. F.; Huang, Y. Synthesis of PtPd bimetal nanocrystals with controllable shape, composition, and their tunable catalytic properties. Nano Lett. 2012, 12, 4265–4270.

    Article  Google Scholar 

  27. [27]

    Rong, H. P., Cai, S. F., Niu, Z. Q.; Li, Y. D. Compositiondependent catalytic activity of bimetallic nanocrystals: AgPd-catalyzed hydrodechlorination of 4-chlorophenol. ACS Catal. 2013, 3, 1560–1563.

    Article  Google Scholar 

  28. [28]

    Wang, S. B., Zhu, W., Ke, J., Lin, M.; Zhang, Y. W. Pd-Rh nanocrystals with tunable morphologies and compositions as efficient catalysts toward Suzuki cross-coupling reactions. ACS Catal. 2014, 4, 2298–2306.

    Article  Google Scholar 

  29. [29]

    Wang, L. B.; Zhao, S. T.; Liu, C. X.; Li, C.; Li, X.; Li, H. L.; Wang, Y. C.; Ma, C.; Li, Z. Y.; Zeng, J. Aerobic oxidation of cyclohexane on catalysts based on twinned and single-crystal Au75Pd25 bimetallic nanocrystals. Nano Lett. 2015, 15, 2875–2880.

    Article  Google Scholar 

  30. [30]

    Zhang, L.; Su, H. Y.; Sun, M.; Wang, Y. C.; Wu, W. L.; Yu, T.; Zeng, J. Concave Cu-Pd bimetallic nanocrystals: Ligand-based Co-reduction and mechanistic study. Nano Res. 2015, 8, 2415–2430.

    Article  Google Scholar 

  31. [31]

    Long, R.; Li, Y.; Liu, Y.; Chen, S. M.; Zheng, X. S.; Gao, C.; He, C. H.; Chen, N. S.; Qi, Z. M.; Song, L. et al. Isolation of Cu atoms in Pd lattice: Forming highly selective sites for photocatalytic conversion of CO2 to CH4. J. Am. Chem. Soc. 2017, 139, 4486–4492.

    Article  Google Scholar 

  32. [32]

    Li, Y. P.; Chen, S. M.; Long, R.; Ju, H. X.; Wang, Z. W.; Yu, X. X.; Gao, F. Y.; Cai, Z. J.; Wang, C. M.; Xu, Q. et al. Near-surface dilution of trace Pd atoms to facilitate Pd-H bond cleavage for giant enhancement of electrocatalytic hydrogen evolution. Nano Energy 2017, 34, 306–312.

    Article  Google Scholar 

  33. [33]

    Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343.

    Article  Google Scholar 

  34. [34]

    Huang, X. Q.; Zhao, Z. P.; Cao, L.; Chen, Y.; Zhu, E. B.; Lin, Z. Y.; Li, M. F.; Yan, A. M.; Zettl, A.; Wang, Y. M. et al. Highperformance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230–1234.

    Article  Google Scholar 

  35. [35]

    Boes, J. R.; Kondratyuk, P.; Yin, C. R.; Miller, J. B.; Gellman, A. J.; Kitchin, J. R. Core level shifts in Cu-Pd alloys as a function of bulk composition and structure. Surf. Sci. 2015, 640, 127–132.

    Article  Google Scholar 

  36. [36]

    Ferrari, P.; Diaz-Droguett, D. E.; Rojas, S.; Cabrera, A. L. Inhibition of hydrogen absorption in bulk Pd by the formation of Ru-Pd surface alloy. Thin Solid Films 2014, 550, 732–737.

    Article  Google Scholar 

  37. [37]

    Luo, W. H.; Sankar, M.; Beale, A. M.; He, Q.; Kiely, C. J.; Bruijnincx, P. C. A.; Weckhuysen, B. M. High performing and stable supported nano-alloys for the catalytic hydrogenation of levulinic acid to γ-valerolactone. Nat. Commun. 2015, 6, 6540.

    Article  Google Scholar 

  38. [38]

    Zhang, N.; Bu, L. Z.; Guo, S. J.; Guo, J.; Huang, X. Q. Screw thread-like platinum-popper nanowires bounded with high-index facets for efficient electrocatalysis. Nano Lett. 2016, 16, 5037–5043.

    Article  Google Scholar 

  39. [39]

    Li, J. M.; Liu, J. Y.; Yang, Y.; Qin, D. Bifunctional Ag@Pd-Ag nanocubes for highly sensitive monitoring of catalytic reactions by surface-enhanced raman spectroscopy. J. Am. Chem. Soc. 2015, 137, 7039–7042.

    Article  Google Scholar 

  40. [40]

    Guo, S. J.; Zhang, S.; Su, D.; Sun, S. H. Seed-mediated synthesis of core/shell FePtM/FePt (M = Pd, Au) nanowires and their electrocatalysis for oxygen reduction reaction. J. Am. Chem. Soc. 2013, 135, 13879–13884.

    Article  Google Scholar 

  41. [41]

    Chen, W.; Yu, R.; Li, L. L.; Wang, A. N.; Peng, Q.; Li, Y. D. A seed-based diffusion route to monodisperse intermetallic CuAu nanocrystals. Angew. Chem. Int. Ed. 2010, 49, 2917–2921.

    Article  Google Scholar 

  42. [42]

    Niu, Z. Q.; Wang, D. S.; Yu, R.; Peng, Q.; Li, Y. D. Highly branched Pt-Ni nanocrystals enclosed by stepped surfacefor methanol oxidation. Chem. Sci. 2012, 3, 1925–1929.

    Article  Google Scholar 

  43. [43]

    Liu, H. L.; Nosheen, F.; Wang, X. Noble metal alloy complex nanostructures: Controllable synthesis and their electrochemical property. Chem. Soc. Rev. 2015, 44, 3056–3078.

    Article  Google Scholar 

  44. [44]

    Liu, X. W.; Wang, D. S.; Li, Y. D. Synthesis and catalytic properties of bimetallic nanomaterials with various architectures. Nano Today 2012, 7, 448–466.

    Article  Google Scholar 

  45. [45]

    Li, X.; Wang, Z. N.; Zhang, Z. R.; Yang, G.; Jin, M. S.; Chen, Q.; Yin, Y. D. Construction of Au-Pd alloy shells for enhanced catalytic performance toward alkyne semihydrogenation reactions. Mater. Horiz. 2017, 4, 584–590.

    Article  Google Scholar 

  46. [46]

    Lim, B.; Kobayashi, H.; Yu, T.; Wang, J. G.; Kim, M. J.; Li, Z. Y.; Rycenga, M.; Xia, Y. N. Synthesis of Pd-Au bimetallic nanocrystals via controlled overgrowth. J. Am. Chem. Soc. 2010, 132, 2506–2507.

    Article  Google Scholar 

  47. [47]

    Yang, Y.; Liu, J. Y.; Fu, Z. W.; Qin, D. Galvanic replacementfree deposition of Au on Ag for core–shell nanocubes with enhanced chemical stability and SERS activity. J. Am. Chem. Soc. 2014, 136, 8153–8156.

    Article  Google Scholar 

  48. [48]

    Li, X.; Chen, Q.; Wang, M. Y.; Cao, Z. M.; Zhan, Q.; He, T. O.; Kuang, Q.; Yin, Y. D.; Jin, M. S. Coordination effect assisted synthesis of ultrathin Pt layers on second metal nanocrystals as efficient oxygen reduction electrocatalysts. J. Mater. Chem. A 2016, 4, 13033–13039.

    Article  Google Scholar 

  49. [49]

    Zhang, L.; Roling, L. T.; Wang, X.; Vara, M.; Chi, M. F.; Liu, J. Y.; Choi, S. I.; Park, J.; Herron, J. A.; Xie, Z. X. et al. Platinum-based nanocages with subnsanometer-thick walls and well-defined, controllable facets. Science 2015, 349, 412–416.

    Article  Google Scholar 

  50. [50]

    Xie, S. F.; Lu, N.; Xie, Z. X.; Wang, J. G.; Kim, M. J.; Xia, Y. N. Synthesis of Pd-Rh core-frame concave nanocubes and their conversion to Rh cubic nanoframes by selective etching of the Pd cores. Angew. Chem. Int. Ed. 2012, 51, 10266–10270.

    Article  Google Scholar 

  51. [51]

    Jin, M. S.; Zhang, H.; Wang, J. G.; Zhong, X. L.; Lu, N.; Li, Z. Y.; Xie, Z. X.; Kim, M. J.; Xia, Y. N. Copper can still be epitaxially deposited on palladium nanocrystals to generate core–shell nanocubes despite their large lattice mismatch. ACS Nano 2012, 6, 2566–2573.

    Article  Google Scholar 

  52. [52]

    Zhou, S.; Li, J. H.; Gilroy, K. D.; Tao, J.; Zhu, C. L.; Yang, X.; Sun, X. J.; Xia, Y. N. Facile synthesis of silver nanocubes with sharp corners and edges in an aqueous solution. ACS Nano 2016, 10, 9861–9870.

    Article  Google Scholar 

  53. [53]

    Zhang, Q.; Li, W. Y.; Moran, C.; Zeng, J.; Chen, J. Y.; Wen, L. P.; Xia, Y. N. Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30–200 nm and comparison of their optical properties. J. Am. Chem. Soc. 2010, 132, 11372–11378.

    Article  Google Scholar 

  54. [54]

    Skrabalak, S. E.; Au, L.; Li, X. D.; Xia, Y. N. Facile synthesis of Ag nanocubes and Au nanocages. Nat. Protoc. 2007, 2, 2182–2190.

    Article  Google Scholar 

  55. [55]

    Zhao, W. G.; Yang, L. N.; Yin, Y. D.; Jin, M. S. Thermodynamic controlled synthesis of intermetallic Au3Cu alloy nanocrystals from Cu microparticles. J. Mater. Chem. A 2014, 2, 902–906.

    Article  Google Scholar 

  56. [56]

    Denton, A. R.; Ashcroft, N. W. Vegard’s law. Phys. Rev. A 1991, 43, 3161–3164.

    Article  Google Scholar 

  57. [57]

    Zhang, G. R.; Zhao, D.; Feng, Y. Y.; Zhang, B. S.; Su, D. S.; Liu, G.; Xu, B. Q. Catalytic Pt-on-Au nanostructures: Why Pt becomes more active on smaller Au particles. ACS Nano 2012, 6, 2226–2236.

    Article  Google Scholar 

  58. [58]

    Zhou, W. P.; Lewera, A.; Larsen, R.; Masel, R. I.; Bagus, P. S.; Wieckowski, A. Size effects in electronic and catalytic properties of unsupported palladium nanoparticles in electrooxidation of formic acid. J. Phys. Chem. B 2006, 110, 13393–13398.

    Article  Google Scholar 

  59. [59]

    Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G. F.; Ross, P. N.; Markovic, N. M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 2007, 6, 241–247.

    Article  Google Scholar 

  60. [60]

    Liu, S. L.; Zhang, Q. H.; Li, Y. F.; Han, M.; Gu, L.; Nan, C. W.; Bao, J. C.; Dai, Z. H. Five-fold twinned Pd2NiAg nanocrystals with increased surface Ni site availability to improve oxygen reduction activity. J. Am. Chem. Soc. 2015, 137, 2820–2823.

    Article  Google Scholar 

  61. [61]

    Winans C. F. Nickel as a catalyst for the hydrogenation of aromatic halogen compounds. J. Am. Chem. Soc. 1939, 61, 3564–3565.

    Article  Google Scholar 

  62. [62]

    Wang, C.; Qiu, J. S.; Liang, C. H.; Xing, L.; Yang, X. M. Carbon nanofiber supported Ni catalysts for the hydrogenation of chloronitrobenzenes. Catal. Commun. 2008, 9, 1749–1753.

    Article  Google Scholar 

  63. [63]

    Zhang, P.; Yu, C.; Fan, X. M.; Wang, X. N.; Ling, Z.; Wang, Z. H.; Qiu, J. S. Magnetically recoverable Ni/C catalysts with hierarchical structure and high-stability for selective hydrogenation of nitroarenes. Phys. Chem. Chem. Phys. 2015, 17, 145–150.

    Article  Google Scholar 

  64. [64]

    Furukawa, S.; Ehara, K.; Ozawa K.; Komatsu, T. A study on the hydrogen activation properties of Ni-based intermetallics: A relationship between reactivity and the electronic state. Phys. Chem. Chem. Phys. 2014, 16, 19828–19831.

    Article  Google Scholar 

Download references

Acknowledgements

M. S. J. is grateful for the funding support from the National Natural Science Foundation of China (Nos. 21471123, 21403160) and Xi’an Jiaotong University (the start-up fund). Q. C. acknowledges the funding from the China Postdoctoral Science Foundation (No. 2015M582634), “the Fundamental Research Funds for the Central Universities” and State Key Laboratory of Chemical Resource Engineering. Y. D. Y. acknowledges support from the U. S. National Science Foundation (No. CHE-1308587).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Qiang Chen or Mingshang Jin.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, X., Wang, X., Liu, M. et al. Construction of Pd-M (M = Ni, Ag, Cu) alloy surfaces for catalytic applications. Nano Res. 11, 780–790 (2018). https://doi.org/10.1007/s12274-017-1687-z

Download citation

Keywords

  • Pd
  • alloy
  • catalyst
  • shape control
  • hydrogenation