Advertisement

Nano Research

, Volume 11, Issue 2, pp 780–790 | Cite as

Construction of Pd-M (M = Ni, Ag, Cu) alloy surfaces for catalytic applications

  • Xiang Li
  • Xixi Wang
  • Maochang Liu
  • Hongyang Liu
  • Qiang ChenEmail author
  • Yadong Yin
  • Mingshang JinEmail author
Research Article

Abstract

The fabrication of ultrathin alloy shells as heterogeneous catalysts to increase the utilization efficiency and enhance the catalytic activity of metal atoms has been recognized as an effective method for the construction of efficient metal nanocatalysts, particularly noble-metal nanocatalysts. In this study, we demonstrate the successful formation of Pd-M (M = Ni, Ag, Cu) alloy shells with a tunable thickness on preformed nanoscale Pd seeds. The success of this synthesis mainly relies on the combination of the slow reduction of “M” ions and the subsequent diffusion of M ad-atoms into the surface lattice of Pd seeds. The composition of the Pd-M alloy shell is easily tuned by changing the type and amount of the added precursor, and the shell thickness is manipulated according to the reaction time. More significantly, the surface structure of these alloy shells is maintained after the reaction, implying that any desired surface structure of Pd-M alloy shells can be prepared by using the appropriate starting materials. Further catalytic evaluation of the hydrogenation of chloronitrobenzenes shows that these alloy surfaces exhibit significantly improved selectivity compared to the Pd seeds. The Pd-Ni alloy surfaces exhibit much better catalytic selectivity (as high as > 99%) than Pd catalysts.

Keywords

Pd alloy catalyst shape control hydrogenation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

M. S. J. is grateful for the funding support from the National Natural Science Foundation of China (Nos. 21471123, 21403160) and Xi’an Jiaotong University (the start-up fund). Q. C. acknowledges the funding from the China Postdoctoral Science Foundation (No. 2015M582634), “the Fundamental Research Funds for the Central Universities” and State Key Laboratory of Chemical Resource Engineering. Y. D. Y. acknowledges support from the U. S. National Science Foundation (No. CHE-1308587).

Supplementary material

12274_2017_1687_MOESM1_ESM.pdf (4.2 mb)
Construction of Pd-M (M = Ni, Ag, Cu) alloy surfaces for catalytic applications

References

  1. [1]
    Peterson, E. J.; DeLaRiva, A. T.; Lin, S.; Johnson, R. S.; Guo, H.; Miller, J. T.; Kwak, J. H.; Peden C. H. F.; Kiefer, B.; Allard, L. F. et al. Low-temperature carbon monoxide oxidation catalysed by regenerable atomically dispersed palladium on alumina. Nat. Commun. 2014, 5, 4885.CrossRefGoogle Scholar
  2. [2]
    Mitsudome, T.; Takahashi, Y.; Ichikawa, S.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Metal-ligand core–shell nanocomposite catalysts for the selective semihydrogenation of alkynes. Angew. Chem. Int. Ed. 2013, 52, 1481–1485.CrossRefGoogle Scholar
  3. [3]
    Kainz, Q. M.; Linhardt, R.; Grass, R. N.; Vilé, G.; Pérez-Ramírez, J.; Stark, W. J.; Reiser, O. Palladium nanoparticles supported on magnetic carbon-coated cobalt nanobeads: Highly active and recyclable catalysts for alkene hydrogenation. Adv. Funct. Mater. 2014, 24, 2020–2027.CrossRefGoogle Scholar
  4. [4]
    Seechurn, C. C. C. J.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. Palladium-catalyzed cross-coupling: A historical contextual perspective to the 2010 Nobel Prize. Angew. Chem. Int. Ed. 2012, 51, 5062–5085.CrossRefGoogle Scholar
  5. [5]
    Mäki-Arvela, P.; Hájek, J.; Salmi, T.; Murzin, D. Y. Chemoselective hydrogenation of carbonyl compounds over heterogeneous catalysts. Appl. Catal. A Gen. 2005, 292, 1–49.CrossRefGoogle Scholar
  6. [6]
    Chan, C. W. A.; Mahadi, A. H.; Li, M. M. J.; Corbos, E. C.; Tang, C.; Jones, G.; Kuo, W. C. H.; Cookson, J.; Brown, C. M.; Bishop, P. T. et al. Interstitial modification of palladium nanoparticles with boron atoms as a green catalyst for selective hydrogenation. Nat. Commun. 2014, 5, 5787.CrossRefGoogle Scholar
  7. [7]
    Jiang, L. C.; Gu, H. Z.; Xu, X. Z.; Yan, X. H. Selective hydrogenation of o-chloronitrobenzene (o-CNB) over supported Pt and Pd catalysts obtained by laser vaporization deposition of bulk metals. J. Mol. Catal. A 2009, 310, 144–149.CrossRefGoogle Scholar
  8. [8]
    Sikhwivhilu, L. M.; Coville, N. J.; Pulimaddi, B. M.; Venkatreddy, J.; Vishwanathan, V. Selective hydrogenation of o-chloronitrobenzene over palladium supported nanotubular titanium dioxide derived catalysts. Catal. Commun. 2007, 8, 1999–2006.CrossRefGoogle Scholar
  9. [9]
    Marshall, S. T.; O’Brien, M.; Oetter, B.; Corpuz, A.; Richards, R. M.; Schwartz, D. K.; Medlin, J. W. Controlled selectivity for palladium catalysts using self-assembled monolayers. Nat. Mater. 2010, 9, 853–858.CrossRefGoogle Scholar
  10. [10]
    Chan, C. W. A.; Xie, Y. L.; Cailuo, N.; Yu, K. M. K.; Cookson, J.; Bishop, P.; Tsang, S. C. New environmentally friendly catalysts containing Pd-interstitial carbon made from Pd-glucose precursors for ultraselective hydrogenations in the liquid phase. Chem. Commun. 2011, 47, 7971–7973.CrossRefGoogle Scholar
  11. [11]
    Kesavan, L.; Tiruvalam, R.; Rahim, M. H. A.; Saiman, M. I. B.; Enache, D. I.; Jenkins, R. L.; Dimitratos, N.; Lopez-Sanchez, J. A.; Taylor, S. H.; Knight, D. W. et al. Solventfree oxidation of primary carbon-hydrogen bonds in toluene using Au-Pd alloy nanoparticles. Science 2011, 331, 195–199.CrossRefGoogle Scholar
  12. [12]
    Jin, M. S.; Liu, H. Y.; Zhang, H.; Xie, Z. X.; Liu, J. Y.; Xia, Y. N. Synthesis of Pd nanocrystals enclosed by {100} facets and with sizes <10 nm for application in CO oxidation. Nano Res. 2011, 4, 83–91.CrossRefGoogle Scholar
  13. [13]
    Jin, M. S.; Zhang, H.; Xie, Z. X.; Xia, Y. N. Palladium nanocrystals enclosed by {100} and {111} facets in controlled proportions and their catalytic activities for formic acid oxidation. Energy Environ. Sci. 2012, 5, 6352–6357.CrossRefGoogle Scholar
  14. [14]
    Jin, M. S.; Zhang, H.; Xie, Z. X.; Xia, Y. N. Palladium concave nanocubes with high-index facets and their enhanced catalytic properties. Angew. Chem. Int. Ed. 2011, 50, 7850–7854.CrossRefGoogle Scholar
  15. [15]
    Zhang, Z. R.; Wang, Z. N.; Zhang, H.; Wang, C. Q.; Yin, Y. D.; Jin, M. S. Monitoring the shape evolution of Pd nanocubes to octahedra by PdS frame markers. Nanoscale 2014, 6, 3518–3521.CrossRefGoogle Scholar
  16. [16]
    Zhang Z. R.; Wang, Z. N.; He, S. N.; Wang, C. Q.; Jin M. S.; Yin, Y. D. Redox reaction induced Ostwald ripening for size- and shape-focusing of palladium nanocrystals. Chem. Sci. 2015, 6, 5197–5203.CrossRefGoogle Scholar
  17. [17]
    Cárdenas-Lizana, F.; Hao, Y. F.; Crespo-Quesada, M.; Yuranov, I.; Wang, X. D.; Keane, M. A.; Kiwi-Minsker, L. Selective gas phase hydrogenation of p-chloronitrobenzene over Pd catalysts: Role of the support. ACS Catal. 2013, 3, 1386–1396.CrossRefGoogle Scholar
  18. [18]
    Zou, J. J.; Xiong, Z. Q.; Wang, L.; Zhang, X. W.; Mi, Z. T. Preparation of Pd-B/γ-Al2O3 amorphous catalyst for the hydrogenation of tricyclopentadiene. J. Mol. Catal. A 2007, 271, 209–215.CrossRefGoogle Scholar
  19. [19]
    Niu, W. X.; Gao, Y. J.; Zhang, W. Q.; Yan, N.; Lu, X. M. Pd-Pb alloy nanocrystals with tailored composition for semihydrogenation: Taking advantage of catalyst poisoning. Angew. Chem. Int. Ed. 2015, 54, 8271–8274.CrossRefGoogle Scholar
  20. [20]
    Chen, G. X.; Xu, C. F.; Huang, X. Q.; Ye, J. Y.; Gu, L.; Li, G.; Tang, Z. C.; Wu, B. H.; Yang, H. Y.; Zhao, Z. P. et al. Interfacial electronic effects control the reaction selectivity of platinum catalysts. Nat. Mater. 2016, 15, 564–569.CrossRefGoogle Scholar
  21. [21]
    Habas, S. E.; Lee, H.; Radmilovic, V.; Somorjai, G. A.; Yang, P. D. Shaping binary metal nanocrystals through epitaxial seeded growth. Nat. Mater. 2007, 6, 692–697.CrossRefGoogle Scholar
  22. [22]
    Xu, J.; White, T.; Li, P.; He, C. H.; Yu, J. G.; Yuan, W. K.; Han, Y. F. Biphasic Pd-Au alloy catalyst for low-temperature CO oxidation. J. Am. Chem. Soc. 2010, 132, 10398–10406.CrossRefGoogle Scholar
  23. [23]
    Chen, A. C.; Holt-Hindle, P. Platinum-based nanostructured materials: Synthesis, properties, and applications. Chem. Rev. 2010, 110, 3767–3804.CrossRefGoogle Scholar
  24. [24]
    Yin, A. X.; Min, X. Q.; Zhang, Y. W.; Yan, C. H. Shape-selective synthesis and facet-dependent enhanced electrocatalytic activity and durability of monodisperse Sub-10 nm Pt-Pd tetrahedrons and cubes. J. Am. Chem. Soc. 2011, 133, 3816–3819.CrossRefGoogle Scholar
  25. [25]
    Zhang, L.; Zhang, J. W.; Kuang, Q.; Xie, S. F.; Jiang, Z. Y.; Xie, Z. X.; Zheng, L. S. Cu2+-assisted synthesis of hexoctahedral Au-Pd alloy nanocrystals with high-index facets. J. Am. Chem. Soc. 2011, 133, 17114–17117.CrossRefGoogle Scholar
  26. [26]
    Huang, X. Q.; Li, Y. J.; Li, Y. J.; Zhou, H. L.; Duan, X. F.; Huang, Y. Synthesis of PtPd bimetal nanocrystals with controllable shape, composition, and their tunable catalytic properties. Nano Lett. 2012, 12, 4265–4270.CrossRefGoogle Scholar
  27. [27]
    Rong, H. P., Cai, S. F., Niu, Z. Q.; Li, Y. D. Compositiondependent catalytic activity of bimetallic nanocrystals: AgPd-catalyzed hydrodechlorination of 4-chlorophenol. ACS Catal. 2013, 3, 1560–1563.CrossRefGoogle Scholar
  28. [28]
    Wang, S. B., Zhu, W., Ke, J., Lin, M.; Zhang, Y. W. Pd-Rh nanocrystals with tunable morphologies and compositions as efficient catalysts toward Suzuki cross-coupling reactions. ACS Catal. 2014, 4, 2298–2306.CrossRefGoogle Scholar
  29. [29]
    Wang, L. B.; Zhao, S. T.; Liu, C. X.; Li, C.; Li, X.; Li, H. L.; Wang, Y. C.; Ma, C.; Li, Z. Y.; Zeng, J. Aerobic oxidation of cyclohexane on catalysts based on twinned and single-crystal Au75Pd25 bimetallic nanocrystals. Nano Lett. 2015, 15, 2875–2880.CrossRefGoogle Scholar
  30. [30]
    Zhang, L.; Su, H. Y.; Sun, M.; Wang, Y. C.; Wu, W. L.; Yu, T.; Zeng, J. Concave Cu-Pd bimetallic nanocrystals: Ligand-based Co-reduction and mechanistic study. Nano Res. 2015, 8, 2415–2430.CrossRefGoogle Scholar
  31. [31]
    Long, R.; Li, Y.; Liu, Y.; Chen, S. M.; Zheng, X. S.; Gao, C.; He, C. H.; Chen, N. S.; Qi, Z. M.; Song, L. et al. Isolation of Cu atoms in Pd lattice: Forming highly selective sites for photocatalytic conversion of CO2 to CH4. J. Am. Chem. Soc. 2017, 139, 4486–4492.CrossRefGoogle Scholar
  32. [32]
    Li, Y. P.; Chen, S. M.; Long, R.; Ju, H. X.; Wang, Z. W.; Yu, X. X.; Gao, F. Y.; Cai, Z. J.; Wang, C. M.; Xu, Q. et al. Near-surface dilution of trace Pd atoms to facilitate Pd-H bond cleavage for giant enhancement of electrocatalytic hydrogen evolution. Nano Energy 2017, 34, 306–312.CrossRefGoogle Scholar
  33. [33]
    Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343.CrossRefGoogle Scholar
  34. [34]
    Huang, X. Q.; Zhao, Z. P.; Cao, L.; Chen, Y.; Zhu, E. B.; Lin, Z. Y.; Li, M. F.; Yan, A. M.; Zettl, A.; Wang, Y. M. et al. Highperformance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230–1234.CrossRefGoogle Scholar
  35. [35]
    Boes, J. R.; Kondratyuk, P.; Yin, C. R.; Miller, J. B.; Gellman, A. J.; Kitchin, J. R. Core level shifts in Cu-Pd alloys as a function of bulk composition and structure. Surf. Sci. 2015, 640, 127–132.CrossRefGoogle Scholar
  36. [36]
    Ferrari, P.; Diaz-Droguett, D. E.; Rojas, S.; Cabrera, A. L. Inhibition of hydrogen absorption in bulk Pd by the formation of Ru-Pd surface alloy. Thin Solid Films 2014, 550, 732–737.CrossRefGoogle Scholar
  37. [37]
    Luo, W. H.; Sankar, M.; Beale, A. M.; He, Q.; Kiely, C. J.; Bruijnincx, P. C. A.; Weckhuysen, B. M. High performing and stable supported nano-alloys for the catalytic hydrogenation of levulinic acid to γ-valerolactone. Nat. Commun. 2015, 6, 6540.CrossRefGoogle Scholar
  38. [38]
    Zhang, N.; Bu, L. Z.; Guo, S. J.; Guo, J.; Huang, X. Q. Screw thread-like platinum-popper nanowires bounded with high-index facets for efficient electrocatalysis. Nano Lett. 2016, 16, 5037–5043.CrossRefGoogle Scholar
  39. [39]
    Li, J. M.; Liu, J. Y.; Yang, Y.; Qin, D. Bifunctional Ag@Pd-Ag nanocubes for highly sensitive monitoring of catalytic reactions by surface-enhanced raman spectroscopy. J. Am. Chem. Soc. 2015, 137, 7039–7042.CrossRefGoogle Scholar
  40. [40]
    Guo, S. J.; Zhang, S.; Su, D.; Sun, S. H. Seed-mediated synthesis of core/shell FePtM/FePt (M = Pd, Au) nanowires and their electrocatalysis for oxygen reduction reaction. J. Am. Chem. Soc. 2013, 135, 13879–13884.CrossRefGoogle Scholar
  41. [41]
    Chen, W.; Yu, R.; Li, L. L.; Wang, A. N.; Peng, Q.; Li, Y. D. A seed-based diffusion route to monodisperse intermetallic CuAu nanocrystals. Angew. Chem. Int. Ed. 2010, 49, 2917–2921.CrossRefGoogle Scholar
  42. [42]
    Niu, Z. Q.; Wang, D. S.; Yu, R.; Peng, Q.; Li, Y. D. Highly branched Pt-Ni nanocrystals enclosed by stepped surfacefor methanol oxidation. Chem. Sci. 2012, 3, 1925–1929.CrossRefGoogle Scholar
  43. [43]
    Liu, H. L.; Nosheen, F.; Wang, X. Noble metal alloy complex nanostructures: Controllable synthesis and their electrochemical property. Chem. Soc. Rev. 2015, 44, 3056–3078.CrossRefGoogle Scholar
  44. [44]
    Liu, X. W.; Wang, D. S.; Li, Y. D. Synthesis and catalytic properties of bimetallic nanomaterials with various architectures. Nano Today 2012, 7, 448–466.CrossRefGoogle Scholar
  45. [45]
    Li, X.; Wang, Z. N.; Zhang, Z. R.; Yang, G.; Jin, M. S.; Chen, Q.; Yin, Y. D. Construction of Au-Pd alloy shells for enhanced catalytic performance toward alkyne semihydrogenation reactions. Mater. Horiz. 2017, 4, 584–590.CrossRefGoogle Scholar
  46. [46]
    Lim, B.; Kobayashi, H.; Yu, T.; Wang, J. G.; Kim, M. J.; Li, Z. Y.; Rycenga, M.; Xia, Y. N. Synthesis of Pd-Au bimetallic nanocrystals via controlled overgrowth. J. Am. Chem. Soc. 2010, 132, 2506–2507.CrossRefGoogle Scholar
  47. [47]
    Yang, Y.; Liu, J. Y.; Fu, Z. W.; Qin, D. Galvanic replacementfree deposition of Au on Ag for core–shell nanocubes with enhanced chemical stability and SERS activity. J. Am. Chem. Soc. 2014, 136, 8153–8156.CrossRefGoogle Scholar
  48. [48]
    Li, X.; Chen, Q.; Wang, M. Y.; Cao, Z. M.; Zhan, Q.; He, T. O.; Kuang, Q.; Yin, Y. D.; Jin, M. S. Coordination effect assisted synthesis of ultrathin Pt layers on second metal nanocrystals as efficient oxygen reduction electrocatalysts. J. Mater. Chem. A 2016, 4, 13033–13039.CrossRefGoogle Scholar
  49. [49]
    Zhang, L.; Roling, L. T.; Wang, X.; Vara, M.; Chi, M. F.; Liu, J. Y.; Choi, S. I.; Park, J.; Herron, J. A.; Xie, Z. X. et al. Platinum-based nanocages with subnsanometer-thick walls and well-defined, controllable facets. Science 2015, 349, 412–416.CrossRefGoogle Scholar
  50. [50]
    Xie, S. F.; Lu, N.; Xie, Z. X.; Wang, J. G.; Kim, M. J.; Xia, Y. N. Synthesis of Pd-Rh core-frame concave nanocubes and their conversion to Rh cubic nanoframes by selective etching of the Pd cores. Angew. Chem. Int. Ed. 2012, 51, 10266–10270.CrossRefGoogle Scholar
  51. [51]
    Jin, M. S.; Zhang, H.; Wang, J. G.; Zhong, X. L.; Lu, N.; Li, Z. Y.; Xie, Z. X.; Kim, M. J.; Xia, Y. N. Copper can still be epitaxially deposited on palladium nanocrystals to generate core–shell nanocubes despite their large lattice mismatch. ACS Nano 2012, 6, 2566–2573.CrossRefGoogle Scholar
  52. [52]
    Zhou, S.; Li, J. H.; Gilroy, K. D.; Tao, J.; Zhu, C. L.; Yang, X.; Sun, X. J.; Xia, Y. N. Facile synthesis of silver nanocubes with sharp corners and edges in an aqueous solution. ACS Nano 2016, 10, 9861–9870.CrossRefGoogle Scholar
  53. [53]
    Zhang, Q.; Li, W. Y.; Moran, C.; Zeng, J.; Chen, J. Y.; Wen, L. P.; Xia, Y. N. Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30–200 nm and comparison of their optical properties. J. Am. Chem. Soc. 2010, 132, 11372–11378.CrossRefGoogle Scholar
  54. [54]
    Skrabalak, S. E.; Au, L.; Li, X. D.; Xia, Y. N. Facile synthesis of Ag nanocubes and Au nanocages. Nat. Protoc. 2007, 2, 2182–2190.CrossRefGoogle Scholar
  55. [55]
    Zhao, W. G.; Yang, L. N.; Yin, Y. D.; Jin, M. S. Thermodynamic controlled synthesis of intermetallic Au3Cu alloy nanocrystals from Cu microparticles. J. Mater. Chem. A 2014, 2, 902–906.CrossRefGoogle Scholar
  56. [56]
    Denton, A. R.; Ashcroft, N. W. Vegard’s law. Phys. Rev. A 1991, 43, 3161–3164.CrossRefGoogle Scholar
  57. [57]
    Zhang, G. R.; Zhao, D.; Feng, Y. Y.; Zhang, B. S.; Su, D. S.; Liu, G.; Xu, B. Q. Catalytic Pt-on-Au nanostructures: Why Pt becomes more active on smaller Au particles. ACS Nano 2012, 6, 2226–2236.CrossRefGoogle Scholar
  58. [58]
    Zhou, W. P.; Lewera, A.; Larsen, R.; Masel, R. I.; Bagus, P. S.; Wieckowski, A. Size effects in electronic and catalytic properties of unsupported palladium nanoparticles in electrooxidation of formic acid. J. Phys. Chem. B 2006, 110, 13393–13398.CrossRefGoogle Scholar
  59. [59]
    Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G. F.; Ross, P. N.; Markovic, N. M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 2007, 6, 241–247.CrossRefGoogle Scholar
  60. [60]
    Liu, S. L.; Zhang, Q. H.; Li, Y. F.; Han, M.; Gu, L.; Nan, C. W.; Bao, J. C.; Dai, Z. H. Five-fold twinned Pd2NiAg nanocrystals with increased surface Ni site availability to improve oxygen reduction activity. J. Am. Chem. Soc. 2015, 137, 2820–2823.CrossRefGoogle Scholar
  61. [61]
    Winans C. F. Nickel as a catalyst for the hydrogenation of aromatic halogen compounds. J. Am. Chem. Soc. 1939, 61, 3564–3565.CrossRefGoogle Scholar
  62. [62]
    Wang, C.; Qiu, J. S.; Liang, C. H.; Xing, L.; Yang, X. M. Carbon nanofiber supported Ni catalysts for the hydrogenation of chloronitrobenzenes. Catal. Commun. 2008, 9, 1749–1753.CrossRefGoogle Scholar
  63. [63]
    Zhang, P.; Yu, C.; Fan, X. M.; Wang, X. N.; Ling, Z.; Wang, Z. H.; Qiu, J. S. Magnetically recoverable Ni/C catalysts with hierarchical structure and high-stability for selective hydrogenation of nitroarenes. Phys. Chem. Chem. Phys. 2015, 17, 145–150.CrossRefGoogle Scholar
  64. [64]
    Furukawa, S.; Ehara, K.; Ozawa K.; Komatsu, T. A study on the hydrogen activation properties of Ni-based intermetallics: A relationship between reactivity and the electronic state. Phys. Chem. Chem. Phys. 2014, 16, 19828–19831.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  1. 1.Frontier Institute of Science and Technology (FIST), School of Chemical Engineering and Technology and State Key Laboratory of Multiphase Flow in Power EngineeringXi’an Jiaotong UniversityXi’anChina
  2. 2.Shenyang National Laboratory for Materials Science, Institute of Metal ResearchChinese Academy of SciencesShenyangChina
  3. 3.State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijingChina
  4. 4.Department of ChemistryUniversity of CaliforniaRiversideUSA

Personalised recommendations