Copper nanowire/multi-walled carbon nanotube composites as all-nanowire flexible electrode for fast-charging/discharging lithium-ion battery


A novel lightweight three-dimensional (3D) composite anode for a fast-charging/discharging Li-ion battery (LIB) was fabricated entirely using one-dimensional (1D) nanomaterials, i.e., Cu nanowires (CuNWs) and multi-walled C nanotubes (MWCNTs). Because of the excellent electrical conductivity, high-aspect ratio structures, and large surface areas of these nanomaterials, the CuNW-MWCNT composite (CNMC) with 3D structure provides significant advantages regarding the transport pathways for both electrons and ions. As an advanced binder-free anode, a CuNW-MWCNT composite film with a controllable thickness (∼600 μm) exhibited a considerably low sheet resistance, and internal cell resistance. Furthermore, the random CuNW network with 3D structure acting as a rigid framework not only prevented MWCNT shrinkage and expansion due to aggregation and swelling but also minimized the effect of the volume change during the charge/discharge process. Both a half cell and a full cell of LIBs with the CNMC anode exhibited high specific capacities and Coulombic efficiencies, even at a high current. More importantly, we for the first time overcame the limitation of MWCNTs as anode materials for fast-charging/discharging LIBs (both half cells and full cells) by employing CuNWs, and the resulting anode can be applied to flexible LIBs. This innovative anode structure can lead to the development of ultrafast chargeable LIBs for electric vehicles.

This is a preview of subscription content, access via your institution.


  1. [1]

    Seba, T. Clean Disruption of Energy and Transportation: How Silicon Valley Will Make Oil, Nuclear, Natural Gas, Coal, Electric Utilities and Conventional Cars Obsolete by 2030; Silicon Valley, Clean Planet Ventures: California, 2014.

    Google Scholar 

  2. [2]

    Burns, L. D. Sustainable mobility: A vision of our transport future. Nature 2013, 497, 181–182.

    Article  Google Scholar 

  3. [3]

    Li, L.; Gao, C. T.; Kovalchuk, A.; Peng, Z. W.; Ruan, G. D.; Yang, Y.; Fei, H. L.; Zhong, Q. F.; Li, Y. L.; Tour, J. M. Sandwich structured graphene-wrapped FeS-graphene nanoribbons with improved cycling stability for lithium ion batteries. Nano Res. 2016, 9, 2904–2911.

    Article  Google Scholar 

  4. [4]

    Jia, X. L.; Lu, Y. F.; Wei, F. Confined growth of Li4Ti5O12 nanoparticles in nitrogen-doped mesoporous graphene fibers for high-performance lithium-ion battery anodes. Nano Res. 2016, 9, 230–239.

    Article  Google Scholar 

  5. [5]

    Kim, C.; Jung, J. W.; Yoon, K. R.; Youn, D. Y.; Park, S.; Kim, I. D. A high-capacity and long-cycle-life lithium-ion battery anode architecture: Silver nanoparticle-decorated SnO2/NiO nanotubes. ACS Nano 2016, 10, 11317–11326.

    Article  Google Scholar 

  6. [6]

    Liu, W.; Oh, P.; Liu, X. E.; Lee, M.-J.; Cho, W.; Chae, S.; Kim, Y.; Cho, J. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew. Chem., Int. Ed. 2015, 54, 4440–4457.

    Article  Google Scholar 

  7. [7]

    Xu, J. T.; Dou, S. X.; Liu, H. K.; Dai, L. M. Cathode materials for next generation lithium ion batteries. Nano Energy 2013, 2, 439–442.

    Article  Google Scholar 

  8. [8]

    Chang, X. H.; Wang, T.; Liu, Z. L.; Zheng, X. Y.; Zheng, J.; Li, X. G. Ultrafine Sn nanocrystals in a hierarchically porous N-doped carbon for lithium ion batteries. Nano Res. 2017, 10, 1950–1958.

    Article  Google Scholar 

  9. [9]

    Kim, W.-S.; Choi, J.; Hong, S.-H. Meso-porous silicon-coated carbon nanotube as an anode for lithium-ion battery. Nano Res. 2016, 9, 2174–2181.

    Article  Google Scholar 

  10. [10]

    Balogun, M.-S.; Qiu, W. T.; Luo, Y.; Meng, H.; Mai, W. J.; Onasanya, A.; Olaniyi, T. K.; Tong, Y. X. A review of the development of full cell lithium-ion batteries: The impact of nanostructured anode materials. Nano Res. 2016, 9, 2823–2851.

    Article  Google Scholar 

  11. [11]

    Longo, M.; Zaninelli, D.; Viola, F.; Romano, P.; Miceli, R.; Caruso, M.; Pellitteri, F. Recharge stations: A review. In Proceedings of the 11th International Conference on Ecological Vehicles and Renewable Energies (EVER), Monte Carlo, Monaco, 2016, pp 1–8.

    Google Scholar 

  12. [12]

    Thess, A.; Lee, R.; Nikolaev, P.; Dai, H. J.; Petit, P.; Robert, J.; Xu, C. H.; Lee, Y. H.; Kim, S. G.; Rinzler, A. G. et al. Crystalline ropes of metallic carbon nanotubes. Science 1996, 273, 483–487.

    Article  Google Scholar 

  13. [13]

    Cui, L.-F.; Yang, Y.; Hsu, C.-M.; Cui, Y. Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries. Nano Lett. 2009, 9, 3370–3374.

    Article  Google Scholar 

  14. [14]

    de las Casas, C.; Li, W. Z. A review of application of carbon nanotubes for lithium ion battery anode material. J. Power Sources 2012, 208, 74–85.

    Article  Google Scholar 

  15. [15]

    Ko, S.; Lee, J.-I.; Yang, H. S.; Park, S.; Jeong, U. Mesoporous CuO particles threaded with CNTs for high-performance lithium-ion battery anodes. Adv. Mater. 2012, 24, 4451–4456.

    Article  Google Scholar 

  16. [16]

    Yin, Z. X.; Lee, C.; Cho, S.; Yoo, J.; Piao, Y. Z.; Kim, Y. S. Facile synthesis of oxidation-resistant copper nanowires toward solution-processable, flexible, foldable, and free-standing electrodes. Small 2014, 10, 5047–5052.

    Google Scholar 

  17. [17]

    Yin, Z. X.; Song, S. K.; You, D. J.; Ko, Y.; Cho, S.; Yoo, J.; Park, S. Y.; Piao, Y. Z.; Chang, S. T.; Kim, Y. S. Novel synthesis, coating, and networking of curved copper nanowires for flexible transparent conductive electrodes. Small 2015, 11, 4576–4583.

    Article  Google Scholar 

  18. [18]

    Yin, Z. X.; Song, S. K.; Cho, S.; You, D. J.; Yoo, J.; Chang, S. T.; Kim, Y. S. Curved copper nanowires-based robust flexible transparent electrodes via all-solution approach. Nano Res. 2017, 9, 3077–3091.

    Article  Google Scholar 

  19. [19]

    Sun, J.-J.; Zhao, H.-Z.; Yang, Q.-Z.; Song, J.; Xue, A. A novel layer-by-layer self-assembled carbon nanotube-based anode: Preparation, characterization, and application in microbial fuel cell. Electrochim. Acta 2010, 55, 3041–3047.

    Article  Google Scholar 

  20. [20]

    Mu, Q. X.; Broughton, D. L.; Yan, B. Endosomal leakage and nuclear translocation of multiwalled carbon nanotubes: Developing a model for cell uptake. Nano Lett. 2009, 9, 4370–4375.

    Article  Google Scholar 

  21. [21]

    Won, Y.; Kim, A.; Lee, D.; Yang, W.; Woo, K.; Jeong, S.; Moon, J. Annealing-free fabrication of highly oxidationresistive copper nanowire composite conductors for photovoltaics. NPG Asia Mater. 2014, 6, e105.

    Article  Google Scholar 

  22. [22]

    Zhang, W.; Yin, Z. X.; Chun, A.; Yoo, J.; Kim, Y. S.; Piao, Y. Z. Bridging oriented copper nanowire-graphene composites for solution-processable, annealing-free, and air-stable flexible electrodes. ACS Appl. Mater. Interfaces 2016, 8, 1733–1741.

    Article  Google Scholar 

  23. [23]

    Cho, S.-J.; Choi, K.-H.; Yoo, J.-T.; Kim, J.-H.; Lee, Y.-H.; Chun, S.-J.; Park, S.-B.; Choi, D.-H.; Wu, Q. L.; Lee, S.-Y. et al. Hetero-nanonet rechargeable paper batteries: Toward ultrahigh energy density and origami foldability. Adv. Funct. Mater. 2015, 25, 6029–6040.

    Article  Google Scholar 

  24. [24]

    Dees, D. W.; Kawauchi, S.; Abraham, D. P.; Prakash, J. Analysis of the galvanostatic intermittent titration technique (GITT) as applied to a lithium-ion porous electrode. J. Power Sources 2009, 189, 263–268.

    Article  Google Scholar 

  25. [25]

    Doughty, D. H.; Roth, E. P. A general discussion of Li ion battery safety. Electrochem. Soc. Interface 2012, 21, 37–44.

    Google Scholar 

  26. [26]

    Hwang, C.; Kim, T.-H.; Cho, Y.-G.; Kim, J.; Song, H.-K. All-in-one assembly based on 3D-intertangled and crossjointed architectures of Si/Cu 1D-nanowires for lithium ion batteries. Sci. Rep. 2015, 5, 8623.

    Article  Google Scholar 

  27. [27]

    Lu, L.-L.; Ge, J.; Yang, J.-N.; Chen, S.-M.; Yao, H. B.; Zhou, F.; Yu, S.-H. Free-standing copper nanowire network current collector for improving lithium anode performance. Nano Lett. 2016, 16, 4431–4437.

    Article  Google Scholar 

  28. [28]

    Yu, S.-H.; Lee, S. H.; Lee, D. J.; Sung, Y.-E.; Hyeon, T. Conversion reaction-based oxide nanomaterials for lithium ion battery anodes. Small 2016, 12, 2146–2172.

    Article  Google Scholar 

  29. [29]

    Qin, G. H.; Ma, Q. Q.; Wang, C. Y. A porous C/LiFePO4/ multiwalled carbon nanotubes cathode material for lithium ion batteries. Electrochim. Acta 2014, 115, 407–415.

    Article  Google Scholar 

  30. [30]

    Luo, S.; Luo, Y. F.; Wu, H. C.; Li, M. Y.; Yan, L. J.; Jiang, K. L.; Liu, L.; Li, Q. Q.; Fan, S. S.; Wang, J. P. Self-assembly of 3D carbon nanotube sponges: A simple and controllable way to build macroscopic and ultralight porous architectures. Adv. Mater. 2017, 29, 1603549.

    Article  Google Scholar 

  31. [31]

    Yoon, S.; Lee, S.; Kim, S.; Park, K.-W.; Cho, D.; Jeong, Y. Carbon nanotube film anodes for flexible lithium ion batteries. J. Power Sources 2015, 279, 495–501.

    Article  Google Scholar 

  32. [32]

    Cui, L.-F.; Hu, L. B.; Choi, J. W.; Cui, Y. Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries. ACS Nano 2010, 4, 3671–3678.

    Article  Google Scholar 

  33. [33]

    Song, T.-B.; Chen, Y.; Chung, C.-H.; Yang, Y. M.; Bob, B.; Duan, H.-S.; Li, G.; Tu, K.-N.; Huang, Y.; Yang, Y. Nanoscale joule heating and electromigration enhanced ripening of silver nanowire contacts. ACS Nano 2014, 8, 2804–2811.

    Article  Google Scholar 

  34. [34]

    Pan, Z. Y.; Ren, J.; Guan, G. Z.; Fang, X.; Wang, B. J.; Doo, S. G.; Son, I. H.; Huang, X. L.; Peng, H. S. Synthesizing nitrogen-doped core-sheath carbon nanotube films for flexible lithium ion batteries. Adv. Energy Mater. 2016, 6, 1600271.

    Article  Google Scholar 

  35. [35]

    Fu, K.; Yildiz, O.; Bhanushali, H.; Wang, Y. X.; Stano, K.; Xue, L. G.; Zhang, X. W.; Bradford, P. D. Aligned carbon nanotube-silicon sheets: A novel nano-architecture for flexible lithium ion battery electrodes. Adv. Mater. 2013, 25, 5109–5114.

    Article  Google Scholar 

  36. [36]

    Balogun, M.-S.; Li, C.; Zeng, Y. X.; Yu, M. H.; Wu, Q. L.; Wu, M. M.; Lu, X. H.; Tong, Y. X. Titanium dioxide@titanium nitride nanowires on carbon cloth with remarkable rate capability for flexible lithium-ion batteries. J. Power Sources 2014, 272, 946–953.

    Article  Google Scholar 

  37. [37]

    Wang, J. G.; Jin, D. D.; Zhou, R.; Li, X.; Liu, X.-R.; Shen, C.; Xie, K. Y.; Li, B. H.; Kang, F. Y.; Wei, B. Q. Highly flexible graphene/Mn3O4 nanocomposite membrane as advanced anodes for Li-ion batteries. ACS Nano 2016, 10, 6227–6234.

    Article  Google Scholar 

Download references


This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP, Ministry of Science, ICT & Future Planning) (Nos. 2015R1A2A1A15053165, 2016R1C1B2013145, and 2016M3A7B4910458).

Author information



Corresponding authors

Correspondence to Jeeyoung Yoo or Youn Sang Kim.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yin, Z., Cho, S., You, DJ. et al. Copper nanowire/multi-walled carbon nanotube composites as all-nanowire flexible electrode for fast-charging/discharging lithium-ion battery. Nano Res. 11, 769–779 (2018).

Download citation


  • 3D composite
  • all-nanowire electrode
  • fast chargeable battery
  • full-cell LIBs
  • flexible battery