Nano Research

, Volume 10, Issue 9, pp 3261–3267 | Cite as

Ag/C nanoparticles catalysed aerobic oxidation of diaryl and aryl(hetero) methylenes into ketones

Research Article


The aerobic oxidation of diaryl and aryl(hetero) methylenes into ketones, catalyzed by Ag/C nanoparticles under mild conditions, was successfully developed. This method features a wide scope of substrates, good yields, and uncomplicated recycling of the catalyst.


nanoparticle aerobic oxidation diaryl methylenes ketones 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We are grateful for the financial support from the National Natural Science Foundation of China (NSFC) (Nos. 21371107 and 21625104).

Supplementary material

12274_2017_1676_MOESM1_ESM.pdf (7.5 mb)
Ag/C nanoparticles catalysed aerobic oxidation of diaryl and aryl(hetero) methylenes into ketones


  1. [1]
    Dannhardt, G.; Fiebich, B. L.; Schweppenhäuser, J. COX-1/COX-2 inhibitors based on the methanone moiety. Eur. J. Med. Chem. 2002, 37, 147–161.CrossRefGoogle Scholar
  2. [2]
    Hummel, C. W.; Geiser, A. G.; Bryant, H. U.; Cohen, I. R.; Dally, R. D.; Fong, K. C.; Frank, S. A.; Hinklin, R.; Jones, S. A.; Lewis, G. et al. A selective estrogen receptor modulator designed for the treatment of uterine leiomyoma with unique tissue specificity for uterus and ovaries in rats. J. Med. Chem. 2005, 48, 6772–6775.CrossRefGoogle Scholar
  3. [3]
    Dohi, T.; Takenaga, N.; Goto, A.; Fujioka, H.; Kita, Y. Clean and efficient benzylic C–H oxidation in water using a hypervalent iodine reagent: Activation of polymeric iodosobenzene with KBr in the presence of montmorillonite-K10. J. Org. Chem. 2008, 73, 7365–7368.CrossRefGoogle Scholar
  4. [4]
    Moriyama, K.; Takemura, M.; Togo, H. Direct and selective benzylic oxidation of alkylarenes via C–H abstraction using alkali metal bromides. Org. Lett. 2012, 14, 2414–2417.CrossRefGoogle Scholar
  5. [5]
    Wu, X. H.; Gorden, A. E. V. 2-Quinoxalinol salen copper complexes for oxidation of aryl methylenes. Eur. J. Org. Chem. 2009, 2009, 503–509.CrossRefGoogle Scholar
  6. [6]
    Alanthadka, A.; Devi, E. S.; Nagarajan, S.; Sridharan, V.; Suvitha, A.; Maheswari, C. U. NHC-catalyzed benzylic Csp³–H bond activation of alkylarenes and N-benzylamines for the synthesis of 3H-quinazolin-4-ones: Experimental and theoretical study. Eur. J. Org. Chem. 2016, 2016, 4872–4880.CrossRefGoogle Scholar
  7. [7]
    Hossain, M. M.; Shyu, S. G. Biphasic copper-catalyzed C–H bond activation of arylalkanes to ketones with tert-butyl hydroperoxide in water at room temperature. Tetrahedron 2016, 72, 4252–4257.CrossRefGoogle Scholar
  8. [8]
    Shaabani, A.; Laeini, M. S.; Shaabani, S.; Seyyedhamzeh, M. NaBrO3/guanidinium-based sulfonic acid: As a transition metal- and strong inorganic acid-free oxidation system for alcohols and alkyl arenes. New. J. Chem. 2016, 40, 2079–2082.CrossRefGoogle Scholar
  9. [9]
    De Houwer, J.; Abbaspour Tehrani, K.; Maes, B. U. W. Synthesis of aryl(di)azinyl ketones through copper- and iron-catalyzed oxidation of the methylene group of aryl(di)azinylmethanes. Angew. Chem., Int. Ed. 2012, 51, 2745–2748.CrossRefGoogle Scholar
  10. [10]
    Itoh, M.; Hirano, K.; Satoh, T.; Miura, M. Copper-catalyzed α-methylenation of benzylpyridines using dimethylacetamide as one-carbon source. Org. Lett. 2015, 16, 2050–2053.CrossRefGoogle Scholar
  11. [11]
    Liu, J. M.; Zhang, X.; Yi, H.; Liu, C.; Liu, R.; Zhang, H.; Zhuo, K. L.; Lei, A. W. Chloroacetate-promoted selective oxidation of heterobenzylic methylenes under copper catalysis. Angew. Chem., Int. Ed. 2015, 54, 1261–1265.CrossRefGoogle Scholar
  12. [12]
    Urgoitia, G.; SanMartin, R.; Herrero, M. T.; Domínguez, E. Palladium NCN and CNC pincer complexes as exceptionally active catalysts for aerobic oxidation in sustainable media. Green Chem. 2011, 13, 2161–2166.CrossRefGoogle Scholar
  13. [13]
    Urgoitia, G.; Maiztegi, A.; SanMartin, R.; Herrero, M. T.; Domínguez, E. Aerobic oxidation at benzylic positions catalyzed by a simple Pd(OAc)2/bis-triazole system. RSC Adv. 2015, 5, 103210–103217.CrossRefGoogle Scholar
  14. [14]
    Urgoitia, G.; SanMartin, R.; Herrero, M. T.; Domínguez, E. An outstanding catalyst for the oxygen-mediated oxidation of arylcarbinols, arylmethylene and arylacetylene compounds. Chem. Commun. 2015, 51, 4799–4802.CrossRefGoogle Scholar
  15. [15]
    Shen, D. Y.; Miao, C. X.; Wang, S. F.; Xia, C. G.; Sun, W. Efficient benzylic and aliphatic C–H oxidation with selectivity for methylenic sites catalyzed by a bioinspired manganese complex. Org. Lett. 2014, 16, 1108–1111.CrossRefGoogle Scholar
  16. [16]
    Bonvin, Y.; Callens, E.; Larrosa, I.; Henderson, D. A.; Oldham, J.; Burton, A. J.; Barrett, A. G. M. Bismuthcatalyzed benzylic oxidations with tert-butyl hydroperoxide. Org. Lett. 2005, 7, 4549–4552.CrossRefGoogle Scholar
  17. [17]
    Peng, H.; Lin, A. J.; Zhang, Y.; Jiang, H. L.; Zhou, J. C.; Cheng, Y. X.; Zhu, C. J.; Hu, H. W. Oxidation and amination of benzylic sp3 C–H bond catalyzed by rhenium(V) complexes. ACS Catal. 2012, 2, 163–167.CrossRefGoogle Scholar
  18. [18]
    Wang, Y.; Kuang, Y.; Wang, Y. H. Rh2(esp)2-catalyzed allylic and benzylic oxidations. Chem. Commun. 2015, 51, 5852–5855.CrossRefGoogle Scholar
  19. [19]
    Li, X. H.; Chen, J. S.; Wang, X. C.; Sun, J. H.; Antonietti, M. Metal-free activation of dioxygen by graphene/g-C3N4 nanocomposites: Functional dyads for selective oxidation of saturated hydrocarbons. J. Am. Chem. Soc. 2011, 133, 8074–8077.CrossRefGoogle Scholar
  20. [20]
    Gao, Y. J.; Hu, G.; Zhong, J.; Shi, Z. J.; Zhu, Y. S.; Su, D. S.; Wang, J. G.; Bao, X. H.; Ma, D. Nitrogen-doped sp2-hybridized carbon as a superior catalyst for selective oxidation. Angew. Chem., Int. Ed. 2013, 52, 2109–2113.CrossRefGoogle Scholar
  21. [21]
    Zhang, P. F.; Lu, H. F.; Zhou, Y.; Zhang, L.; Wu, Z. L.; Yang, S. Z.; Shi, H. L.; Zhu, Q. L.; Chen, Y. F.; Dai, S. Mesoporous MnCeOx solid solutions for low temperature and selective oxidation of hydrocarbons. Nat. Commun. 2015, 6, 8446.CrossRefGoogle Scholar
  22. [22]
    Shaabani, A.; Hezarkhani, Z.; Badali, E. Wool supported manganese dioxide nano-scale dispersion: A biopolymer based catalyst for the aerobic oxidation of organic compounds. RSC Adv. 2015, 5, 61759–61767.CrossRefGoogle Scholar
  23. [23]
    Fan, S.; Dong, W. J.; Huang, X. B.; Gao, H. Y.; Wang, J. J.; Jin, Z. K.; Tang, J.; Wang, G. In situ-induced synthesis of magnetic Cu-CuFe2O4@HKUST-1 heterostructures with enhanced catalytic performance for selective aerobic benzylic C–H oxidation. ACS Catal. 2017, 7, 243–249.CrossRefGoogle Scholar
  24. [24]
    Shaabani, A.; Hezarkhani, Z.; Nejad, M. K. Cr- and Znsubstituted cobalt ferrite nanoparticles supported on guanidinemodified graphene oxide as efficient and recyclable catalysts. J. Mater. Sci. 2017, 52, 96–112.CrossRefGoogle Scholar
  25. [25]
    Shi, D. B.; Ren, Y. W.; Jiang, H. F.; Lu, J. X.; Cheng, X. F. A new three-dimensional metal-organic framework constructed from 9,10-anthracene dibenzoate and Cd(II) as a highly active heterogeneous catalyst for oxidation of alkylbenzenes. Dalton Trans. 2013, 42, 484–491.CrossRefGoogle Scholar
  26. [26]
    Xu, W. X.; Zhang, Z. Q.; Zhao, X.; Li, J. Catalytically active metal organic framework based on a porphyrin modified by electron-withdrawing groups. J. Coord. Chem. 2017, 70, 746–755.CrossRefGoogle Scholar
  27. [27]
    Verma, S.; Nasir Baig, R. B.; Nadagouda, M. N.; Varma, R. S. Photocatalytic C–H activation of hydrocarbons over VO@g-C3N4. ACS Sustainable Chem. Eng. 2016, 4, 2333–2336.CrossRefGoogle Scholar
  28. [28]
    Mühldorf, B.; Wolf, R. Photocatalytic benzylic C–H bond oxidation with a flavin scandium complex. Chem. Commun. 2015, 51, 8425–8428.CrossRefGoogle Scholar
  29. [29]
    He, C.; Zhang, X. H.; Huang, R. F.; Pan, J.; Li, J. Q.; Ling, X. G.; Xiong, Y.; Zhu, X. M. Synthesis of structurally diverse diarylketones through the diarylmethyl sp3 CH oxidation. Tetrahedron Lett. 2014, 55, 4458–4462.CrossRefGoogle Scholar
  30. [30]
    Chebolu, R.; Bahuguna, A.; Sharma, R.; Mishra, V. K.; Ravikumar, P. C. An unusual chemoselective oxidation strategy by an unprecedented exploration of an electrophilic center of DMSO: A new facet to classical DMSO oxidation. Chem. Commun. 2015, 51, 15438–15441.CrossRefGoogle Scholar
  31. [31]
    Wang, H. Q.; Wang, Z.; Huang, H. C.; Tan, J. J.; Xu, K. KOtBu-promoted oxidation of (hetero)benzylic Csp3–H to ketones with molecular oxygen. Org. Lett. 2016, 18, 5680–5683.CrossRefGoogle Scholar
  32. [32]
    Cai, S. F.; Rong, H. P.; Yu, X. F.; Liu, X. W.; Wang, D. S.; He, W.; Li, Y. D. Room temperature activation of oxygen by monodispersed metal nanoparticles: Oxidative dehydrogenative coupling of anilines for azobenzene syntheses. ACS Catal. 2013, 3, 478–486.CrossRefGoogle Scholar
  33. [33]
    Zhang, Q.; Cai, S. F.; Li, L. S.; Chen, Y. F.; Rong, H. P.; Niu, Z. Q.; Liu, J. J.; He, W.; Li, Y. D. Direct syntheses of styryl ethers from benzyl alcohols via Ag nanoparticlecatalyzed tandem aerobic oxidation. ACS Catal. 2013, 3, 1681–1684.CrossRefGoogle Scholar
  34. [34]
    Balfour, J. A.; McTavish, D.; Heel, R. C. Fenofibrate: A review of its pharmacodynamic and pharmacokinetic properties and therapeutic use in dyslipidaemia. Drugs 1990, 40, 260–290.CrossRefGoogle Scholar
  35. [35]
    McKeage, K.; Keating, G. M. Fenofibrate: A review of its use in dyslipidaemia. Drugs 2001, 71, 1917–1946.CrossRefGoogle Scholar
  36. [36]
    Krysiak, R.; Gdula-Dymek, A.; Bachowski, R.; Okopien, B. Pleiotropic effects of atorvastatin and fenofibrate in metabolic syndrome and different types of pre-diabetes. Diabetes Care 2010, 33, 2266–2270.CrossRefGoogle Scholar
  37. [37]
    Ahlburg, A.; Lindhardt, A. T.; Taaning, R. H.; Modvig, A. E.; Skrydstrup, T. An air-tolerant approach to the carbonylative Suzuki-Miyaura coupling: Applications in isotope labeling. J. Org. Chem. 2013, 78, 10310–10318.CrossRefGoogle Scholar
  38. [38]
    Chu, L. L.; Lipshultz, J. M.; MacMillan, D. W. C. Merging photoredox and nickel catalysis: The direct synthesis of ketones by the decarboxylative arylation of α-oxo acids. Angew. Chem., Int. Ed. 2015, 54, 7929–7933.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Tsinghua-Peking Joint Center for Life Sciences and School of Life SciencesTsinghua UniversityBeijingChina
  2. 2.Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
  3. 3.School of Pharmaceutical SciencesTsinghua UniversityBeijingChina

Personalised recommendations