Nano Research

, Volume 11, Issue 2, pp 642–655 | Cite as

Domain-engineered BiFeO3 thin-film photoanodes for highly enhanced ferroelectric solar water splitting

  • Jaesun Song
  • Taemin Ludvic Kim
  • Jongmin Lee
  • Sam Yeon Cho
  • Jaeseong Cha
  • Sang Yun Jeong
  • Hyunji An
  • Wan Sik Kim
  • Yen-Sook Jung
  • Jiyoon Park
  • Gun Young Jung
  • Dong-Yu Kim
  • Ji Young Jo
  • Sang Don Bu
  • Ho Won Jang
  • Sanghan Lee
Research Article


In photoelectrochemical (PEC) water splitting, charge separation and collection by the electric field in the photoactive material are the most important factors for improved conversion efficiency. Hence, ferroelectric oxides, in which electrons are the majority carriers, are considered promising photoanode materials because their high built-in potential, provided by their spontaneous polarization, can significantly enhance the separation and drift of photogenerated carriers. In this regard, the PEC properties of BiFeO3 thin-film photoanodes with different crystallographic orientations and consequent ferroelectric domain structures are investigated. As the crystallographic orientation changes from (001)pc via (110)pc to (111)pc, the ferroelastic domains in epitaxial BiFeO3 thin films become mono-variant and the spontaneous polarization levels increase to 110 μC/cm2. Consequently, the photocurrent density at 0 V vs. Ag/AgCl increases approximately 5.3-fold and the onset potential decreases by 0.180 V in the downward polarization state. It is further demonstrated that ferroelectric switching in the (111)pc BiFeO3 thin-film photoanode leads to an approximate change of 8,000% in the photocurrent density and a 0.330 V shift in the onset potential. This study strongly suggests that domain-engineered ferroelectric materials can be used as effective charge separation and collection layers for efficient solar water-splitting photoanodes.


BiFeO3 ferroelectric photoelectrochemical domain orientation pulsed laser deposition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors gratefully acknowledge the financial support from the Basic Science Research Program (No. NRF-2014R1A1A2053552) and the Future Material Discovery Program (No. NRF-2016M3D1A1027666) through the National Research Foundation of Korea, and the International Energy Joint R&D Program through the Korea Institute of Energy Technology Evaluation and Planning (No. 20168510011350), and by the GIST (Gwangju Institute of Science and Technology) Research Institute (GRI) Project through a grant provided by GIST in 2016.

Supplementary material

12274_2017_1669_MOESM1_ESM.pdf (2.2 mb)
Domain-engineered BiFeO3 thin-film photoanodes for highly enhanced ferroelectric solar water splitting


  1. [1]
    Chapin, D. M.; Fuller, C. S.; Pearson, G. L. A new silicon p–n junction photocell for converting solar radiation into electrical power. J. Appl. Phys. 1954, 25, 676–677.CrossRefGoogle Scholar
  2. [2]
    O’Regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740.CrossRefGoogle Scholar
  3. [3]
    Britt, J.; Ferekides, C. Thin-film CdS/CdTe solar cell with 15.8% efficiency. Appl. Phys. Lett. 1993, 62, 2851–2852.CrossRefGoogle Scholar
  4. [4]
    Chitambar, M.; Wang, Z. J.; Liu, Y. M.; Rockett, A.; Maldonado, S. Dye-sensitized photocathodes: Efficient light-stimulated hole injection into p-GaP under depletion conditions. J. Am. Chem. Soc. 2012, 134, 10670–10681.CrossRefGoogle Scholar
  5. [5]
    Gur, I.; Fromer, N. A.; Geier, M. L.; Alivisatos, A. P. Airstable all-inorganic nanocrystal solar cells processed from solution. Science 2005, 310, 462–465.CrossRefGoogle Scholar
  6. [6]
    Ginley, D.; Green, M. A.; Collins, R. Solar energy conversion toward 1 terawatt. MRS Bull. 2008, 33, 355–364.CrossRefGoogle Scholar
  7. [7]
    An, H.; Han, J. Y.; Kim, B.; Song, J.; Jeong, S. Y.; Franchini, C.; Bark, C. W.; Lee, S. Large enhancement of the photovoltaic effect in ferroelectric complex oxides through bandgap reduction. Sci. Rep. 2016, 6, 28313.CrossRefGoogle Scholar
  8. [8]
    Fridkin, V. M. Bulk photovoltaic effect in noncentrosymmetric crystals. Crystallogr. Rep. 2001, 46, 654–658.CrossRefGoogle Scholar
  9. [9]
    Pantel, D.; Chu, Y.-H.; Martin, L. W.; Ramesh, R.; Hesse, D.; Alexe, M. Switching kinetics in epitaxial BiFeO3 thin films. J. Appl. Phys. 2010, 107, 084111.CrossRefGoogle Scholar
  10. [10]
    Clark, J. S.; Robertson, J. Band gap and Schottky barrier heights of multiferroic BiFeO3. Appl. Phys. Lett. 2007, 90, 132903.CrossRefGoogle Scholar
  11. [11]
    Hauser, A. J.; Zhang, J.; Mier, L.; Ricciardo, R. A.; Woodward, P. M.; Gustafson, T. L.; Brillson, L. J.; Yang, F. Y. Characterization of electronic structure and defect states of thin epitaxial BiFeO3 films by UV–visible absorption and cathodoluminescence spectroscopies. Appl. Phys. Lett. 2008, 92, 222901.CrossRefGoogle Scholar
  12. [12]
    Yi, H. T.; Choi, T.; Choi, S. G.; Oh, S. G.; Cheong, S. W. Mechanism of the switchable photovoltaic effect in ferroelectric BiFeO3. Adv. Mater. 2011, 23, 3403–3407.CrossRefGoogle Scholar
  13. [13]
    Neaton, J. B.; Ederer, C.; Waghmare, U. V.; Spaldin, N. A.; Rabe, K. M. First-principles study of spontaneous polarization in multiferroic BiFeO3. Phys. Rev. B 2005, 71, 014113.CrossRefGoogle Scholar
  14. [14]
    Wang, Y. Y. A giant polarization value in bismuth ferrite thin films. J. Alloys Compd. 2011, 509, L362–L364.CrossRefGoogle Scholar
  15. [15]
    Kim, T. H.; Baek, S. H.; Yang, S. M.; Kim, Y. S.; Jeon, B. C.; Lee, D.; Chung, J.-S.; Eom, C. B.; Yoon, J.-G.; Noh, T. W. Polarity-dependent kinetics of ferroelectric switching in epitaxial BiFeO3(111) capacitors. Appl. Phys. Lett. 2011, 99, 012905.CrossRefGoogle Scholar
  16. [16]
    Wu, J. G.; Wang, J. Orientation dependence of ferroelectric behavior of BiFeO3 thin films. J. Appl. Phys. 2009, 106, 104111.CrossRefGoogle Scholar
  17. [17]
    Béa, H.; Bibes, M.; Zhu, X.-H.; Fusil1, S.; Bouzehouane, K.; Petit, S.; Kreisel, J.; Barthélémy, A. Crystallographic, magnetic, and ferroelectric structures of bulklike BiFeO3 thin films. Appl. Phys. Lett. 2008, 93, 072901.CrossRefGoogle Scholar
  18. [18]
    Li, J. F.; Wang, J. L.; Wuttig, M.; Ramesh, R.; Wang, N. G.; Ruette, B.; Pyatakov, A. P.; Zvezdin, A. K.; Viehland, D. Dramatically enhanced polarization in (001), (101), and (111) BiFeO3 thin films due to epitiaxial-induced transitions. Appl. Phys. Lett. 2004, 84, 5261–5263.CrossRefGoogle Scholar
  19. [19]
    Wang, J.; Neaton, J. B.; Zheng, H.; Nagarajan, V.; Ogale, S. B.; Liu, B.; Viehland, D.; Vaithyanathan, V.; Schlom, D. G.; Waghmare, U. V. et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 2003, 299, 1719–1722.CrossRefGoogle Scholar
  20. [20]
    Singh, S. K.; Kim, Y. K.; Funakubo, H.; Ishiwara, H. Epitaxial BiFeO3 thin films fabricated by chemical solution deposition. Appl. Phys. Lett. 2006, 88, 162904.CrossRefGoogle Scholar
  21. [21]
    Chen, Z. H.; He, L.; Zhang, F.; Jiang, J.; Meng, J. W.; Zhao, B. Y.; Jiang, A. Q. The conduction mechanism of large on/off ferroelectric diode currents in epitaxial (111) BiFeO3 thin film. J. Appl. Phys. 2013, 113, 184106.CrossRefGoogle Scholar
  22. [22]
    Zhu, J.; Luo, W. B.; Li, Y. R. Growth and properties of BiFeO3 thin films deposited on LaNiO3-buffered SrTiO3 (001) and (111) substrates by PLD. Appl. Surf. Sci. 2008, 255, 3466–3469.CrossRefGoogle Scholar
  23. [23]
    Sone, K.; Naganuma, H.; Miyazaki, T.; Nakajima, T.; Okamura, S. Crystal structures and electrical properties of epitaxial BiFeO3 thin films with (001), (110), and (111) orientations. Jpn. J. Appl. Phys. 2010, 49, 09MB03.CrossRefGoogle Scholar
  24. [24]
    Kubel, F.; Schmid, H. Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3. Acta Cryst. B 1990, 46, 698–702.CrossRefGoogle Scholar
  25. [25]
    Baek, S.-H.; Folkman, C. M.; Park, J.-W.; Lee, S.; Bark, C.-W.; Tybell, T.; Eom, C.-B. The nature of polarization fatigue in BiFeO3. Adv. Mater. 2011, 23, 1621–1625.CrossRefGoogle Scholar
  26. [26]
    Das, R. R.; Kim, D. M.; Baek, S. H.; Eom, C. B.; Zavaliche, F.; Yang, S. Y.; Ramesh, R.; Chen, Y. B.; Pan, X. Q.; Ke, X. et al. Synthesis and ferroelectric properties of epitaxial BiFeO3 thin films grown by sputtering. Appl. Phys. Lett. 2006, 88, 242904.CrossRefGoogle Scholar
  27. [27]
    Streiffer, S. K.; Parker, C. B.; Romanov, A. E.; Lefevre, M. J.; Zhao, L.; Speck, J. S.; Pompe, W.; Foster, C. M.; Bai, G. R. Domain patterns in epitaxial rhombohedral ferroelectric films. I. Geometry and experiments. J. Appl. Phys. 1998, 83, 2742–2753.CrossRefGoogle Scholar
  28. [28]
    Taylor, D. V.; Damjanovic, D. Evidence of domain wall contribution to the dielectric permittivity in PZT thin films at sub-switching fields. J. Appl. Phys. 1997, 82, 1973–1975.CrossRefGoogle Scholar
  29. [29]
    Jang, H. W.; Ortiz, D.; Baek, S. H.; Folkman, C. M.; Das, R. R.; Shafer, P.; Chen, Y. B.; Nelson, C. T.; Pan, X. Q.; Ramesh, R. et al. Domain engineering for enhanced ferroelectric properties of epitaxial (001) BiFeO thin films. Adv. Mater. 2009, 21, 817–823.CrossRefGoogle Scholar
  30. [30]
    Cruz, M. P.; Chu, Y.-H.; Zhang, J. X.; Yang, P. L.; Zavaliche, F.; He, Q.; Shafer, P.; Chen, L. Q.; Ramesh, R. Strain control of domain-wall stability in epitaxial BiFeO3 (110) films. Phys. Rev. Lett. 2007, 99, 217601.CrossRefGoogle Scholar
  31. [31]
    Liu, Q.; Zhou, Y.; You, L.; Wang, J. L.; Shen, M. R.; Fang, L. Enhanced ferroelectric photoelectrochemical properties of polycrystalline BiFeO3 film by decorating with Ag nanoparticles. Appl. Phys. Lett. 2016, 108, 022902.CrossRefGoogle Scholar
  32. [32]
    Ji, W.; Yao, K.; Lim, Y. F.; Liang, Y. C.; Suwardi, A. Epitaxial ferroelectric BiFeO3 thin films for unassisted photocatalytic water splitting. Appl. Phys. Lett. 2013, 103, 062901.CrossRefGoogle Scholar
  33. [33]
    Rong, N. N.; Chu, M. S.; Tang, Y. L.; Zhang, C.; Cui, X.; He, H. C.; Zhang, Y. H.; Xiao, P. Improved photoelectrocatalytic properties of Ti-doped BiFeO3 films for water oxidation. J. Mater. Sci. 2016, 51, 5712–5723.CrossRefGoogle Scholar
  34. [34]
    Moniz, S. J. A.; Quesada-Cabrera, R.; Blackman, C. S.; Tang, J. W.; Southern, P.; Weaver, P. M.; Carmalt, C. J. A simple, low-cost CVD route to thin films of BiFeO3 for efficient water photo-oxidation. J. Mater. Chem. A 2014, 2, 2922–2927.CrossRefGoogle Scholar
  35. [35]
    Cao, D. W.; Wang, Z. J.; Nasori; Wen, L. Y.; Mi, Y.; Lei, Y. Switchable charge-transfer in the photoelectrochemical energy-conversion process of ferroelectric BiFeO3 photoelectrodes. Angew. Chem., Int. Ed. 2014, 53, 11027–11031.CrossRefGoogle Scholar
  36. [36]
    Rojac, T.; Bencan, A.; Drazic, G.; Sakamoto, N.; Ursic, H.; Jancar, B.; Tavcar, G.; Makarovic, M.; Walker, J.; Malic, B. et al. Domain-wall conduction in ferroelectric BiFeO3 controlled by accumulation of charged defects. Nat. Mater. 2017, 16, 322–327.CrossRefGoogle Scholar
  37. [37]
    Huang, Y.-L.; Chang, W. S.; Van, C. N.; Liu, H.-J.; Tsai, K.-A.; Chen, J.-W.; Kuo, H.-H.; Tzeng, W.-Y.; Chen, Y.-C.; Wu, C.-L. et al. Tunable photoelectrochemical performance of Au/BiFeO3 heterostructure. Nanoscale 2016, 8, 15795–15801.CrossRefGoogle Scholar
  38. [38]
    Chen, S. Y.; Wang, L.-W. Thermodynamic oxidation and reduction potentials of photocatalytic semiconductors in aqueous solution. Chem. Mater. 2012, 24, 3659–3666.CrossRefGoogle Scholar
  39. [39]
    Choi, T.; Lee, S.; Choi, Y. J.; Kiryukhin, V.; Cheong, S. W. Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science 2009, 324, 63–66.CrossRefGoogle Scholar
  40. [40]
    Chen, J.; Lu, H. D.; Liu, H. J.; Chu, Y.-H.; Dunn, S.; Ostrikov, K. K.; Gruverman, A.; Valanoor, N. Interface control of surface photochemical reactivity in ultrathin epitaxial ferroelectric films. Appl. Phys. Lett. 2013, 102, 182904.CrossRefGoogle Scholar
  41. [41]
    Fang, L.; You, L.; Zhou, Y.; Ren, P.; Lim, Z. S.; Wang, J. L. Switchable photovoltaic response from polarization modulated interfaces in BiFeO3 thin films. Appl. Phys. Lett. 2014, 104, 142903.CrossRefGoogle Scholar
  42. [42]
    Rioult, M.; Datta, S.; Stanescu, D.; Stanescu, S.; Belkhou, R.; Maccherozzi, F.; Magnan, H.; Barbier, A. Tailoring the photocurrent in BaTiO3/Nb:SrTiO3 photoanodes by controlled ferroelectric polarization. Appl. Phys. Lett. 2015, 107, 103901.CrossRefGoogle Scholar
  43. [43]
    Yun, K. Y.; Noda, M.; Okuyama, M.; Saeki, H.; Tabata, H.; Saito, K. Structural and multiferroic properties of BiFeO3 thin films at room temperature. J. Appl. Phys. 2004, 96, 3399–3403.CrossRefGoogle Scholar
  44. [44]
    Xu, G. Y.; Hiraka, H.; Shirane, G.; Li, J. F.; Wang, J. L.; Viehland, D. Low symmetry phase in (001) BiFeO3 epitaxial constrained thin films. Appl. Phys. Lett. 2005, 86, 182905.CrossRefGoogle Scholar
  45. [45]
    Béa, H.; Bibes, M.; Fusil, S.; Bouzehouane, K.; Jacquet, E.; Rode, K.; Bencok, P.; Barthélémy, A. Investigation on the origin of the magnetic moment of BiFeO3 thin films by advanced X-ray characterizations. Phys. Rev. B 2006, 74, 020101(R).CrossRefGoogle Scholar
  46. [46]
    Chu, Y.-H.; Zhao, T.; Cruz, M. P.; Zhan, Q.; Yang, P. L.; Martin, L. W.; Huijben, M.; Yang, C. H.; Zavaliche, F.; Zheng, H. et al. Ferroelectric size effects in multiferroic BiFeO3 thin films. Appl. Phys. Lett. 2007, 90, 252906.CrossRefGoogle Scholar
  47. [47]
    Lewis, N. S. A quantitative investigation of the open-circuit photovoltage at the semiconductor/liquid interface. J. Electrochem. Soc. 1984, 131, 2496–2503.CrossRefGoogle Scholar
  48. [48]
    Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446–6473.CrossRefGoogle Scholar
  49. [49]
    Wang, G. M.; Ling, Y. C.; Wheeler, D. A.; George, K. E. N.; Horsley, K.; Heske, C.; Zhang, J. Z.; Li, Y. Facile synthesis of highly photoactive α-Fe2O3-based films for water oxidation. Nano Lett. 2011, 11, 3503–3509.CrossRefGoogle Scholar
  50. [50]
    Wang, Z. J.; Cao, D. W.; Wen, L. Y.; Xu, R.; Obergfell, M.; Mi, Y.; Zhan, Z. B.; Nasori, N.; Demsar, J.; Lei, Y. Manipulation of charge transfer and transport in plasmonicferroelectric hybrids for photoelectrochemical applications. Nat. Commun. 2016, 7, 10348.CrossRefGoogle Scholar
  51. [51]
    Liao, L. B.; Zhang, Q. H.; Su, Z. H.; Zhao, Z. Z.; Wang, Y. N.; Li, Y.; Lu, X. X.; Wei, D. G.; Feng, G. Y.; Yu, Q. K. et al. Efficient solar water-splitting using a nanocrystalline CoO photocatalyst. Nat. Nanotechnol. 2014, 9, 69–73.CrossRefGoogle Scholar
  52. [52]
    Xu, H.-M.; Wang, H. C.; Shi, J.; Lin, Y. H.; Nan, C. W. Photoelectrochemical performance observed in Mn-doped BiFeO3 heterostructured thin films. Nanomaterials 2016, 6, 215.CrossRefGoogle Scholar
  53. [53]
    Pintilie, L.; Alexe, M. Metal-ferroelectric-metal heterostructures with Schottky contacts. I. Influence of the ferroelectric properties. J. Appl. Phys. 2005, 98, 124103.CrossRefGoogle Scholar
  54. [54]
    Yang, S. Y.; Seidel, J.; Byrnes, S. J.; Shafer, P.; Yang, C.-H.; Rossell, M. D.; Yu, P.; Chu, Y.-H.; Scott, J. F.; Ager, J. W. et al. Above-bandgap voltages from ferroelectric photovoltaic devices. Nat. Nanotechnol. 2010, 5, 143–147.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  • Jaesun Song
    • 1
  • Taemin Ludvic Kim
    • 2
  • Jongmin Lee
    • 1
  • Sam Yeon Cho
    • 3
  • Jaeseong Cha
    • 1
  • Sang Yun Jeong
    • 1
  • Hyunji An
    • 1
  • Wan Sik Kim
    • 1
  • Yen-Sook Jung
    • 1
  • Jiyoon Park
    • 1
  • Gun Young Jung
    • 1
  • Dong-Yu Kim
    • 1
  • Ji Young Jo
    • 1
  • Sang Don Bu
    • 3
  • Ho Won Jang
    • 2
  • Sanghan Lee
    • 1
  1. 1.School of Materials Science and EngineeringGwangju Institute of Science and Technology (GIST)GwangjuRepublic of Korea
  2. 2.Department of Materials Science and Engineering, Research Institute of Advanced MaterialsSeoul National UniversitySeoulRepublic of Korea
  3. 3.Department of PhysicsChonbuk National UniversityJeonjuRepublic of Korea

Personalised recommendations