Nano Research

, Volume 10, Issue 12, pp 4318–4326 | Cite as

Free-standing porous carbon electrodes derived from wood for high-performance Li-O2 battery applications

  • Jingru Luo
  • Xiahui Yao
  • Lei Yang
  • Yang Han
  • Liao Chen
  • Xiumei Geng
  • Vivek Vattipalli
  • Qi Dong
  • Wei Fan
  • Dunwei WangEmail author
  • Hongli ZhuEmail author
Research Article


Porous carbon materials are widely used in particulate forms for energy applications such as fuel cells, batteries, and (super) capacitors. To better hold the particles together, polymeric additives are utilized as binders, which not only increase the weight and volume of the devices, but also cause adverse side effects. We developed a wood-derived, free-standing porous carbon electrode and successfully applied it as a cathode in Li-O2 batteries. The spontaneously formed hierarchical porous structure exhibits good performance in facilitating the mass transport and hosting the discharge products of Li2O2. Heteroatom (N) doping further improves the catalytic activity of the carbon cathode with lower overpotential and higher capacity. Overall, the Li-O2 battery based on the new carbon cathode affords a stable energy efficiency of 65% and can be operated for 20 cycles at a discharge depth of 70%. The wood-derived free-standing carbon represents a new, unique structure for energy applications.


bio-inspired free-standing electrode porous carbon lithium oxygen batteries 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work is supported by Boston College. H. Zhu. We acknowledge the Northeastern University Startup and Tier 1 support. XPS was performed at the Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Infrastructure Network (NNIN), which is supported by the National Science Foundation under NSF (No. 1541959). CNS is part of Harvard University. XRD was performed at the MIT Center of Material Science and Engineering.

Supplementary material

12274_2017_1660_MOESM1_ESM.pdf (2.1 mb)
Free-standing porous carbon electrodes derived from wood for high-performance Li-O2 battery applications


  1. [1]
    Fang, B. Z.; Kim, J. H.; Kim, M.; Yu, J. S. Ordered hierarchical nanostructured carbon as a highly efficient cathode catalyst support in proton exchange membrane fuel cell. Chem. Mater. 2009, 21, 789–796.CrossRefGoogle Scholar
  2. [2]
    Kjeang, E.; Michel, R.; Harrington, D. A.; Djilali, N.; Sinton, D. A microfluidic fuel cell with flow-through porous electrodes. J. Am. Chem. Soc. 2008, 130, 4000–4006.CrossRefGoogle Scholar
  3. [3]
    Long, J. W.; Dunn, B.; Rolison, D. R.; White, H. S. Threedimensional battery architectures. Chem. Rev. 2004, 104, 4463–4492.CrossRefGoogle Scholar
  4. [4]
    Ogasawara, T.; Débart, A.; Holzapfel, M.; Novák, P.; Bruce, P. G. Rechargeable Li2O2 electrode for lithium batteries. J. Am. Chem. Soc. 2006, 128, 1390–1393.CrossRefGoogle Scholar
  5. [5]
    Wang, D. W.; Li, F.; Liu, M.; Lu, G. Q.; Cheng, H. M. 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew. Chem., Int. Ed. 2008, 47, 373–376.CrossRefGoogle Scholar
  6. [6]
    Zhai, Y. P.; Dou, Y. Q.; Zhao, D. Y.; Fulvio, P. F.; Mayes, R. T.; Dai, S. Carbon materials for chemical capacitive energy storage. Adv. Mater. 2011, 23, 4828–4850.CrossRefGoogle Scholar
  7. [7]
    Pandolfo, A. G.; Hollenkamp, A. F. Carbon properties and their role in supercapacitors. J. Power Sources 2006, 157, 11–27.CrossRefGoogle Scholar
  8. [8]
    Dutta, S.; Bhaumik, A.; Wu, K. C. W. Hierarchically porous carbon derived from polymers and biomass: Effect of interconnected pores on energy applications. Energy Environ. Sci. 2014, 7, 3574–3592.CrossRefGoogle Scholar
  9. [9]
    Long, C. M.; Nascarella, M. A.; Valberg, P. A. Carbon black vs. black carbon and other airborne materials containing elemental carbon: Physical and chemical distinctions. Environ. Pollut. 2013, 181, 271–286.CrossRefGoogle Scholar
  10. [10]
    Liu, G.; Zheng, H.; Song, X.; Battaglia, V. S. Particles and polymer binder interaction: A controlling factor in lithium-ion electrode performance. J. Electrochem. Soc. 2012, 159, A214–A221.CrossRefGoogle Scholar
  11. [11]
    Ha, D. H.; Islam, M. A.; Robinson, R. D. Binder-free and carbon-free nanoparticle batteries: A method for nanoparticle electrodes without polymeric binders or carbon black. Nano Lett. 2012, 12, 5122–5130.CrossRefGoogle Scholar
  12. [12]
    Chen, Z. H.; Li, H.; Tian, R.; Duan, H. N.; Guo, Y. P.; Chen, Y. J.; Zhou, J.; Zhang, C. M.; Dugnani, R.; Liu, H. Z. Three dimensional graphene aerogels as binder-less, freestanding, elastic and high-performance electrodes for lithium-ion batteries. Sci. Rep. 2016, 6, 27365.CrossRefGoogle Scholar
  13. [13]
    Yao, X. H.; Dong, Q.; Cheng, Q. M.; Wang, D. W. Why do lithium–oxygen batteries fail: Parasitic chemical reactions and their synergistic effect. Angew. Chem., Int. Ed. 2016, 55, 11344–11353.CrossRefGoogle Scholar
  14. [14]
    Black, R.; Oh, S. H.; Lee, J. H.; Yim, T.; Adams, B.; Nazar, L. F. Screening for superoxide reactivity in Li-O2 batteries: Effect on Li2O2/LiOH crystallization. J. Am. Chem. Soc. 2012, 134, 2902–2905.CrossRefGoogle Scholar
  15. [15]
    Amanchukwu, C. V.; Harding, J. R.; Shao-Horn, Y.; Hammond, P. T. Understanding the chemical stability of polymers for lithium–air batteries. Chem. Mater. 2015, 27, 550–561.CrossRefGoogle Scholar
  16. [16]
    Etacheri, V.; Sharon, D.; Garsuch, A.; Afri, M.; Frimer, A. A.; Aurbach, D. Hierarchical activated carbon microfiber (ACM) electrodes for rechargeable Li–O2 batteries. J. Mater. Chem. A 2013, 1, 5021–5030.CrossRefGoogle Scholar
  17. [17]
    Lacey, M. J.; Jeschull, F.; Edström, K.; Brandell, D. Porosity blocking in highly porous carbon black by PVdF binder and its implications for the Li–S system. J. Phys. Chem. C 2014, 118, 25890–25898.CrossRefGoogle Scholar
  18. [18]
    Wang, Z. L.; Xu, D.; Xu, J. J.; Zhang, L. L.; Zhang, X. B. Graphene oxide gel-derived, free-standing, hierarchically porous carbon for high-capacity and high-rate rechargeable Li-O2 batteries. Adv. Funct. Mater. 2012, 22, 3699–3705.CrossRefGoogle Scholar
  19. [19]
    Liu, Q. C.; Xu, J. J.; Xu, D.; Zhang, X. B. Flexible lithiumoxygen battery based on a recoverable cathode. Nat. Commun. 2015, 6, 7892.CrossRefGoogle Scholar
  20. [20]
    Xu, J. J.; Wang, Z. L.; Xu, D.; Zhang, L. L.; Zhang, X. B. Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium-oxygen batteries. Nat. Commun. 2013, 4, 2438.Google Scholar
  21. [21]
    Byon, H. R.; Gallant, B. M.; Lee, S. W.; Shao-Horn, Y. Role of oxygen functional groups in carbon nanotube/graphene freestanding electrodes for high performance lithium batteries. Adv. Funct. Mater. 2013, 23, 1037–1045.CrossRefGoogle Scholar
  22. [22]
    Yin, Y. B.; Xu, J. J.; Liu, Q. C.; Zhang, X. B. Macroporous interconnected hollow carbon nanofibers inspired by goldentoad eggs toward a binder-free, high-rate, and flexible electrode. Adv. Mater. 2016, 28, 7494–7500.CrossRefGoogle Scholar
  23. [23]
    Chang, Z. W.; Xu, J. J.; Liu, Q. C.; Li, L.; Zhang, X. B. Recent progress on stability enhancement for cathode in rechargeable non-aqueous lithium-oxygen battery. Adv. Energy Mater. 2015, 5, 1500633.CrossRefGoogle Scholar
  24. [24]
    Liu, T.; Liu, Q. C.; Xu, J. J.; Zhang, X. B. Cable-type water-survivable flexible Li-O2 battery. Small 2016, 12, 3101–3105.CrossRefGoogle Scholar
  25. [25]
    Zhu, H. L.; Luo, W.; Ciesielski, P. N.; Fang, Z. Q.; Zhu, J. Y.; Henriksson, G.; Himmel, M. E.; Hu, L. B. Wood-derived materials for green electronics, biological devices, and energy applications. Chem. Rev. 2016, 116, 9305–9374.CrossRefGoogle Scholar
  26. [26]
    Zhu, H. L.; Jia, Z.; Chen, Y. C.; Weadock, N.; Wan, J. Y.; Vaaland, O.; Han, X. G.; Li, T.; Hu, L. B. Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir. Nano Lett. 2013, 13, 3093–3100.CrossRefGoogle Scholar
  27. [27]
    Byrne, C.; Nagle, D. C. Carbonization of wood for advanced materials applications. Carbon 1997, 35, 259–266.CrossRefGoogle Scholar
  28. [28]
    Read, J.; Mutolo, K.; Ervin, M.; Behl, W.; Wolfenstine, J.; Driedger, A.; Foster, D. Oxygen transport properties of organic electrolytes and performance of lithium/oxygen battery. J. Electrochem. Soc. 2003, 150, A1351–A1356.CrossRefGoogle Scholar
  29. [29]
    Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.CrossRefGoogle Scholar
  30. [30]
    Xie, J.; Yao, X. H.; Cheng, Q. M.; Madden, I. P.; Dornath, P.; Chang, C. C.; Fan, W.; Wang, D. W. Three dimensionally ordered mesoporous carbon as a stable, high-performance Li–O2 battery cathode. Angew. Chem., Int. Ed. 2015, 54, 4299–4303.CrossRefGoogle Scholar
  31. [31]
    Gong, K. P.; Du, F.; Xia, Z. H.; Durstock, M.; Dai, L. M. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 2009, 323, 760–764.CrossRefGoogle Scholar
  32. [32]
    Guo, D. H.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 2016, 351, 361–365.CrossRefGoogle Scholar
  33. [33]
    Pang, J.; John, V. T.; Loy, D. A.; Yang, Z.; Lu, Y. Hierarchical mesoporous carbon/silica nanocomposites from phenyl-bridged organosilane. Adv. Mater. 2005, 17, 704–707.CrossRefGoogle Scholar
  34. [34]
    Lu, Y. C.; Kwabi, D. G.; Yao, K. P. C.; Harding, J. R.; Zhou, J. G.; Zuin, L.; Shao-Horn, Y. The discharge rate capability of rechargeable Li-O2 batteries. Energy Environ. Sci. 2011, 4, 2999–3007.CrossRefGoogle Scholar
  35. [35]
    Shevlin, P. B.; McPherson, D. W.; Melius, P. Reaction of atomic carbon with ammonia. The mechanism of formation of amino acid precursors. J. Am. Chem. Soc. 1983, 105, 488–491.CrossRefGoogle Scholar
  36. [36]
    Tuinstra, F.; Koenig, J. L. Raman spectrum of graphite. J. Chem. Phys. 1970, 53, 1126–1130.CrossRefGoogle Scholar
  37. [37]
    Matter, P. H.; Zhang, L.; Ozkan, U. S. The role of nanostructure in nitrogen-containing carbon catalysts for the oxygen reduction reaction. J. Catal. 2006, 239, 83–96.CrossRefGoogle Scholar
  38. [38]
    McCloskey, B. D.; Speidel, A.; Scheffler, R.; Miller, D. C.; Viswanathan, V.; Hummelshøj, J. S.; Nørskov, J. K.; Luntz, A. C. Twin problems of interfacial carbonate formation in nonaqueous Li–O2 batteries. J. Phys. Chem. Lett. 2012, 3, 997–1001.CrossRefGoogle Scholar
  39. [39]
    Yin, W.; Grimaud, A.; Lepoivre, F.; Yang, C. Z.; Tarascon, J. M. Chemical vs. electrochemical formation of Li2CO3 as a discharge product in Li-O2/CO2 batteries by controlling the superoxide intermediate. J. Phys. Chem. Lett. 2017, 8, 214–222.CrossRefGoogle Scholar
  40. [40]
    Younesi, R.; Hahlin, M.; Björefors, F.; Johansson, P.; Edström, K. Li-O2 battery degradation by lithium peroxide (Li2O2): A model study. Chem. Mater. 2013, 25, 77–84.CrossRefGoogle Scholar
  41. [41]
    Xie, J.; Dong, Q.; Madden, I.; Yao, X. H.; Cheng, Q. M.; Dornath, P.; Fan, W.; Wang, D. W. Achieving low overpotential Li–O2 battery operations by Li2O2 decomposition through one-electron processes. Nano Lett. 2015, 15, 8371–8376.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Jingru Luo
    • 1
  • Xiahui Yao
    • 1
  • Lei Yang
    • 2
  • Yang Han
    • 2
  • Liao Chen
    • 2
  • Xiumei Geng
    • 2
  • Vivek Vattipalli
    • 3
  • Qi Dong
    • 1
  • Wei Fan
    • 3
  • Dunwei Wang
    • 1
    Email author
  • Hongli Zhu
    • 2
    Email author
  1. 1.Department of Chemistry, Merkert Chemistry CenterBoston CollegeChestnut HillUSA
  2. 2.Department of Mechanical and Industrial EngineeringNortheastern UniversityBostonUSA
  3. 3.Chemical Engineering DepartmentUniversity of Massachusetts AmherstAmherstUSA

Personalised recommendations