Nano Research

, Volume 10, Issue 9, pp 3248–3260 | Cite as

Water-assisted self-sustained burning of metallic single-walled carbon nanotubes for scalable transistor fabrication

  • Keigo Otsuka
  • Taiki Inoue
  • Yuki Shimomura
  • Shohei Chiashi
  • Shigeo Maruyama
Research Article

Abstract

Although aligned arrays of semiconducting single-walled carbon nanotubes (s-SWNTs) are promising for use in next-generation electronics owing to their ultrathin bodies and ideal electrical properties, even a small portion of metallic (m-) counterparts causes excessive leakage in field-effect transistors (FETs). To fully exploit the benefits of s-SWNTs for use in large-scale systems, it is necessary to completely eliminate m-SWNTs from as-grown SWNT arrays and thereby obtain purely semiconducting large-area arrays, wherein numerous FETs can be flexibly built. In this study, we performed electrical burning of m-SWNTs assisted by water vapor and polymer coating to eliminate m-SWNTs over a long length for the scalable fabrication of transistors from the remaining s-SWNT arrays. During the electrical-breakdown process, the combination of water vapor and the polymer coating significantly enhanced the burning of the SWNTs, resulting in a self-sustained reaction along the nanotube axis. We found that m-SWNT segments partially remaining on the anode side resulted from one-way burning from the initial breakdown position, where Joule-heating-induced oxidation first occurred. The s-SWNT-enriched arrays obtained were used to fabricate multiple FETs with a high on-off current ratio. The results indicate the advantages of this approach over conventional electrical breakdown for the large-scale purification of s-SWNTs.

Keywords

single-walled carbon nanotubes field-effect transistor selective removal electrical breakdown one-way burning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2017_1648_MOESM1_ESM.pdf (3.5 mb)
Water-assisted self-sustained burning of metallic single-walled carbon nanotubes for scalable transistor fabrication

References

  1. [1]
    Shulaker, M. M.; Hills, G.; Patil, N.; Wei, H.; Chen, H. Y.; Philip Wong, H. S.; Mitra, S. et al., Carbon nanotube computer, Nature 2013, 501, 526–530.CrossRefGoogle Scholar
  2. [2]
    Franklin, A. D. et al., Electronics: The road to carbon nanotube transistors, Nature 2013, 498, 443–444.CrossRefGoogle Scholar
  3. [3]
    Kocabas, C.; Hur, S. H.; Gaur, A.; Meitl, M. A.; Shim, M.; Rogers, J. A. et al., Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors, Small 2005, 1, 1110–1116.CrossRefGoogle Scholar
  4. [4]
    Ago, H.; Nakamura, K.; Ikeda, K.; Uehara, N.; Ishigami, N.; Tsuji, M. et al., Aligned growth of isolated single-walled carbon nanotubes programmed by atomic arrangement of substrate surface, Chem. Phys. Lett. 2005, 408, 433–438.CrossRefGoogle Scholar
  5. [5]
    Hu, Y.; Kang, L. X.; Zhao, Q. C.; Zhong, H.; Zhang, S. C.; Yang, L. W.; Wang, Z. Q.; Lin, J. J.; Li, Q. W.; Zhang, Z. Y. et al. et al., Growth of high-density horizontally aligned SWNT arrays using trojan catalysts, Nat. Commun. 2015, 6, 6099.CrossRefGoogle Scholar
  6. [6]
    Kang, L. X.; Hu, Y.; Zhong, H.; Si, J.; Zhang, S. C.; Zhao, Q. C.; Lin, J. J.; Li, Q. W.; Zhang, Z. Y.; Peng, L. M. et al. et al., Large-area growth of ultra-high-density single-walled carbon nanotube arrays on sapphire surface, Nano Res. 2015, 8, 3694–3703.CrossRefGoogle Scholar
  7. [7]
    Zhou, W. W.; Ding, L.; Yang, S.; Liu, J. et al., Synthesis of highdensity, large-diameter, and aligned single-walled carbon nanotubes by multiple-cycle growth methods, ACS Nano 2011, 5, 3849–3857.CrossRefGoogle Scholar
  8. [8]
    Hong, S. W.; Banks, T.; Rogers, J. A. et al., Improved density in aligned arrays of single-walled carbon nanotubes by sequential chemical vapor deposition on quartz, Adv. Mater. 2010, 22, 1826–1830.CrossRefGoogle Scholar
  9. [9]
    Shulaker, M. M.; Wei, H.; Payne, J.; Provine, J.; Chen, H. Y.; Philip Wong, H. S.; Mitra, S. et al., Linear increases in carbon nanotube density through multiple transfer technique, Nano Lett. 2011, 11, 1881–1886.CrossRefGoogle Scholar
  10. [10]
    Engel, M.; Small, J. P.; Steiner, M.; Freitag, M.; Green, A. A.; Hersam, M. C.; Avouris, P. et al., Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays, ACS Nano 2008, 2, 2445–2452.CrossRefGoogle Scholar
  11. [11]
    Shekhar, S.; Stokes, P.; Khondaker, S. I. et al., Ultrahigh density alignment of carbon nanotube arrays by dielectrophoresis, ACS Nano 2011, 5, 1739–1746.CrossRefGoogle Scholar
  12. [12]
    Cao, Q.; Han, S. J.; Tulevski, G. S. et al., Fringing-field dielectrophoretic assembly of ultrahigh-density semiconducting nanotube arrays with a self-limited pitch, Nat. Commun. 2014, 5, 5071.CrossRefGoogle Scholar
  13. [13]
    Brady, G. J.; Way, A. J.; Safron, N. S.; Evensen, H. T.; Gopalan, P.; Arnold, M. S. et al., Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs, Sci. Adv. 2016, 2, e1601240.CrossRefGoogle Scholar
  14. [14]
    Zhou, W. W.; Zhan, S. T.; Ding, L.; Liu, J. et al., General rules for selective growth of enriched semiconducting single walled carbon nanotubes with water vapor as in situ etchant, J. Am. Chem. Soc. 2012, 134, 14019–14026.CrossRefGoogle Scholar
  15. [15]
    Yang, F.; Wang, X.; Zhang, D. Q.; Yang, J.; Luo, D.; Xu, Z. W.; Wei, J. K.; Wang, J. Q.; Xu, Z.; Peng, F. et al. et al., Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts, Nature 2014, 510, 522–524.CrossRefGoogle Scholar
  16. [16]
    Kang, L. X.; Zhang, S. C.; Li, Q. W.; Zhang, J. et al., Growth of horizontal semiconducting SWNT arrays with density higher than 100 Tubes/µm using ethanol/methane chemical vapor deposition, J. Am. Chem. Soc. 2016, 138, 6727–6730.CrossRefGoogle Scholar
  17. [17]
    Collins, P. G.; Arnold, M. S.; Avouris, P. et al., Engineering carbon nanotubes and nanotube circuits using electrical breakdown, Science 2001, 292, 706–709.CrossRefGoogle Scholar
  18. [18]
    Zhang, G. Y.; Qi, P. F.; Wang, X. R.; Lu, Y. R.; Li, X. L.; Tu, R.; Bangsaruntip, S.; Mann, D.; Zhang, L.; Dai, H. J. et al., Selective etching of metallic carbon nanotubes by gas-phase reaction, Science 2006, 314, 974–977.CrossRefGoogle Scholar
  19. [19]
    Jin, S. H.; Dunham, S. N.; Song, J. Z.; Xie, X.; Kim, J.-H.; Lu, C. F.; Islam, A.; Du, F.; Kim, J.; Felts, J. et al. et al., Using nanoscale thermocapillary flows to create arrays of purely semiconducting single-walled carbon nanotubes, Nat. Nanotechnol. 2013, 8, 347–355.CrossRefGoogle Scholar
  20. [20]
    Li, J. H.; Franklin, A. D.; Liu, J. et al., Gate-free electrical breakdown of metallic pathways in single-walled carbon nanotube crossbar networks, Nano Lett. 2015, 15, 6058–6065.CrossRefGoogle Scholar
  21. [21]
    Shulaker, M. M.; Pitner, G.; Hills, G.; Giachino, M.; Philip Wong, H.-S.; Mitra, S. High-performance carbon nanotube field-effect transistors. In 2014 IEEE International Electron Devices Meeting, San Francisco, CA,2014, pp 33.6.1–33.6.4.Google Scholar
  22. [22]
    Shulaker, M. M.; Van Rethy, J.; Hills, G.; Wei, H.; Chen, H.-Y.; Gielen, G.; Philip Wong, H.-S.; Mitra, S. et al., Sensor-todigital interface built entirely with carbon nanotube FETs, IEEE J. Solid-State Circ. 2014, 49, 190–201.CrossRefGoogle Scholar
  23. [23]
    Patil, N.; Lin, A.; Zhang, J.; Wei, H.; Anderson, K.; Philip Wong, H.-S.; Mitra, S. et al., Scalable carbon nanotube computational and storage circuits immune to metallic and mispositioned carbon nanotubes, IEEE Trans. Nanotechnol. 2011, 10, 744–750.CrossRefGoogle Scholar
  24. [24]
    Shulaker, M. M.; Van Rethy, J.; Wu, T. F.; Suriyasena Liyanage, L.; Wei, H.; Li, Z. Y.; Pop, E.; Gielen, G.; Philip Wong, H.-S.; Mitra, S. et al., Carbon nanotube circuit integration up to Sub-20 nm channel lengths, ACS Nano 2014, 8, 3434–3443.CrossRefGoogle Scholar
  25. [25]
    Pop, E. et al., The role of electrical and thermal contact resistance for joule breakdown of single-wall carbon nanotubes, Nanotechnology 2008, 19, 295202.CrossRefGoogle Scholar
  26. [26]
    Otsuka, K.; Inoue, T.; Chiashi, S.; Maruyama, S. et al., Selective removal of metallic single-walled carbon nanotubes in full length by organic film-assisted electrical breakdown, Nanoscale 2014, 6, 8831–8835.CrossRefGoogle Scholar
  27. [27]
    Liao, A.; Alizadegan, R.; Ong, Z.-Y.; Dutta, S.; Xiong, F.; Hsia, K. J.; Pop, E. et al., Thermal dissipation and variability in electrical breakdown of carbon nanotube devices, Phys. Rev. B 2010, 82, 205406.CrossRefGoogle Scholar
  28. [28]
    Xie, X.; Grosse, K. L.; Song, J. Z.; Lu, C. F.; Dunham, S.; Du, F.; Islam, A. E.; Li, Y. H.; Zhang, Y. H.; Pop, E. et al. et al., Quantitative thermal imaging of single-walled carbon nanotube devices by scanning joule expansion microscopy, ACS Nano 2012, 6, 10267–10275.CrossRefGoogle Scholar
  29. [29]
    Otsuka, K.; Inoue, T.; Shimomura, Y.; Chiashi, S.; Maruyama, S. et al., Field emission and anode etching during formation of length-controlled nanogaps in electrical breakdown of horizontally aligned single-walled carbon nanotubes, Nanoscale 2016, 8, 16363–16370.CrossRefGoogle Scholar
  30. [30]
    Homma, Y.; Chiashi, S.; Yamamoto, T.; Kono, K.; Matsumoto, D.; Shitaba, J.; Sato, S. et al., Photoluminescence measurements and molecular dynamics simulations of water adsorption on the hydrophobic surface of a carbon nanotube in water vapor, Phys. Rev. Lett. 2013, 110, 157402.CrossRefGoogle Scholar
  31. [31]
    Cao, Q.; Xia, M. G.; Kocabas, C.; Shim, M.; Rogers, J. A.; Rotkin, S. V. et al., Gate capacitance coupling of singled-walled carbon nanotube thin-film transistors, Appl. Phys. Lett. 2007, 90, 23516.CrossRefGoogle Scholar
  32. [32]
    Wahab, M. A.; Alam, M. A. et al., Implications of electrical crosstalk for high density aligned array of single-wall carbon nanotubes, IEEE Trans. Electron Dev. 2014, 61, 4273–4281.CrossRefGoogle Scholar
  33. [33]
    Deng, S. B.; Tang, J. Y.; Kang, L. X.; Hu, Y.; Yao, F. R.; Zhao, Q. C.; Zhang, S. C.; Liu, K. H.; Zhang, J. et al., Highthroughput determination of statistical structure information for horizontal carbon nanotube arrays by optical imaging, Adv. Mater. 2016, 28, 2018–2023.CrossRefGoogle Scholar
  34. [34]
    Matsui, K.; Tsuji, H.; Makino, A. A further study of the effects of water vapor concentration on the rate of combustion of an artificial graphite in humid air flow. Combust. Flame 1986, 63, 415–427.CrossRefGoogle Scholar
  35. [35]
    Jensen, G. A. et al., The kinetics of gasification of carbon contained in coal minerals at atmospheric pressure, Ind. Eng. Chem. Process Des. Dev. 1975, 14, 308–314.CrossRefGoogle Scholar
  36. [36]
    Ong, Z.-Y.; Pop, E. et al., Molecular dynamics simulation of thermal boundary conductance between carbon nanotubes and SiO2, Phys. Rev. B 2010, 81, 155408.CrossRefGoogle Scholar
  37. [37]
    Chiashi, S.; Hanashima, T.; Mitobe, R.; Nagatsu, K.; Yamamoto, T.; Homma, Y. et al., Water encapsulation control in individual single-walled carbon nanotubes by laser irradiation, J. Phys. Chem. Lett. 2014, 5, 408–412.CrossRefGoogle Scholar
  38. [38]
    Kim, W.; Javey, A.; Vermesh, O.; Wang, Q.; Li, Y. M.; Dai, H. J. et al., Hysteresis caused by water molecules in carbon nanotube field-effect transistors, Nano Lett. 2003, 3, 193–198.CrossRefGoogle Scholar
  39. [39]
    Choi, W.; Hong, S.; Abrahamson, J. T.; Han, J.-H.; Song, C.; Nair, N.; Baik, S.; Strano, M. S. et al., Chemically driven carbon-nanotube-guided thermopower waves, Nat. Mater. 2010, 9, 423–429.CrossRefGoogle Scholar
  40. [40]
    Pop, E.; Mann, D. A.; Wang, Q.; Goodson, K.; Dai, H. J. et al., Thermal conductance of an individual single-wall carbon nanotube above room temperature, Nano Lett. 2006, 6, 96–100.CrossRefGoogle Scholar
  41. [41]
    Hida, S.; Hori, T.; Shiga, T.; Elliott, J.; Shiomi, J. et al., Thermal resistance and phonon scattering at the interface between carbon nanotube and amorphous polyethylene, Int. J. Heat Mass Transf. 2013, 67, 1024–1029.CrossRefGoogle Scholar
  42. [42]
    Hirata, T.; Kashiwagi, T.; Brown, J. E. et al., Thermal and oxidative degradation of poly(methyl methacrylate): Weight loss, Macromolecules 1985, 18, 1410–1418.CrossRefGoogle Scholar
  43. [43]
    Maruyama, S. A molecular dynamics simulation of heat conduction in finite length SWNTs. Phys. B: Condens. Matter 2002, 323, 193–195.CrossRefGoogle Scholar
  44. [44]
    Maruyama, S.; Kojima, R.; Miyauchi, Y.; Chiashi, S.; Kohno, M. et al., Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol, Chem. Phys. Lett. 2002, 360, 229–234.CrossRefGoogle Scholar
  45. [45]
    Inoue, T.; Hasegawa, D.; Badar, S.; Aikawa, S.; Chiashi, S.; Maruyama, S. et al., Effect of gas pressure on the density of horizontally aligned single-walled carbon nanotubes grown on quartz substrates, J. Phys. Chem. C 2013, 117, 11804–11810.CrossRefGoogle Scholar
  46. [46]
    Jiao, L. Y.; Fan, B.; Xian, X. J.; Wu, Z. Y.; Zhang, J.; Liu, Z. F. et al., Creation of nanostructures with poly(methyl methacrylate)-mediated nanotransfer printing, J. Am. Chem. Soc. 2008, 130, 12612–12613.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Keigo Otsuka
    • 1
  • Taiki Inoue
    • 1
  • Yuki Shimomura
    • 1
  • Shohei Chiashi
    • 1
  • Shigeo Maruyama
    • 1
    • 2
  1. 1.Department of Mechanical EngineeringThe University of TokyoTokyoJapan
  2. 2.Energy NanoEngineering Lab.National Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan

Personalised recommendations