Nano Research

, Volume 10, Issue 9, pp 3248–3260 | Cite as

Water-assisted self-sustained burning of metallic single-walled carbon nanotubes for scalable transistor fabrication

  • Keigo Otsuka
  • Taiki Inoue
  • Yuki Shimomura
  • Shohei Chiashi
  • Shigeo Maruyama
Research Article


Although aligned arrays of semiconducting single-walled carbon nanotubes (s-SWNTs) are promising for use in next-generation electronics owing to their ultrathin bodies and ideal electrical properties, even a small portion of metallic (m-) counterparts causes excessive leakage in field-effect transistors (FETs). To fully exploit the benefits of s-SWNTs for use in large-scale systems, it is necessary to completely eliminate m-SWNTs from as-grown SWNT arrays and thereby obtain purely semiconducting large-area arrays, wherein numerous FETs can be flexibly built. In this study, we performed electrical burning of m-SWNTs assisted by water vapor and polymer coating to eliminate m-SWNTs over a long length for the scalable fabrication of transistors from the remaining s-SWNT arrays. During the electrical-breakdown process, the combination of water vapor and the polymer coating significantly enhanced the burning of the SWNTs, resulting in a self-sustained reaction along the nanotube axis. We found that m-SWNT segments partially remaining on the anode side resulted from one-way burning from the initial breakdown position, where Joule-heating-induced oxidation first occurred. The s-SWNT-enriched arrays obtained were used to fabricate multiple FETs with a high on-off current ratio. The results indicate the advantages of this approach over conventional electrical breakdown for the large-scale purification of s-SWNTs.


single-walled carbon nanotubes field-effect transistor selective removal electrical breakdown one-way burning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Part of this work was financially supported by JSPS KAKENHI Grant Number JP15H05760, JP25107002, JP26420135 and JST-EC DG RTD within the Strategic International Collaborative Research Program (SICORP). This work was partly conducted at the Center for Nano Lithography & Analysis, VLSI Design and Education Center (VDEC), and at the Laser Alliance of the University of Tokyo. K. O. was financially supported by a JSPS Fellowship (No. JP15J07857).

Supplementary material

12274_2017_1648_MOESM1_ESM.pdf (3.5 mb)
Water-assisted self-sustained burning of metallic single-walled carbon nanotubes for scalable transistor fabrication


  1. [1]
    Shulaker, M. M.; Hills, G.; Patil, N.; Wei, H.; Chen, H. Y.; Philip Wong, H. S.; Mitra, S. et al., Carbon nanotube computer, Nature 2013, 501, 526–530.CrossRefGoogle Scholar
  2. [2]
    Franklin, A. D. et al., Electronics: The road to carbon nanotube transistors, Nature 2013, 498, 443–444.CrossRefGoogle Scholar
  3. [3]
    Kocabas, C.; Hur, S. H.; Gaur, A.; Meitl, M. A.; Shim, M.; Rogers, J. A. et al., Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors, Small 2005, 1, 1110–1116.CrossRefGoogle Scholar
  4. [4]
    Ago, H.; Nakamura, K.; Ikeda, K.; Uehara, N.; Ishigami, N.; Tsuji, M. et al., Aligned growth of isolated single-walled carbon nanotubes programmed by atomic arrangement of substrate surface, Chem. Phys. Lett. 2005, 408, 433–438.CrossRefGoogle Scholar
  5. [5]
    Hu, Y.; Kang, L. X.; Zhao, Q. C.; Zhong, H.; Zhang, S. C.; Yang, L. W.; Wang, Z. Q.; Lin, J. J.; Li, Q. W.; Zhang, Z. Y. et al. et al., Growth of high-density horizontally aligned SWNT arrays using trojan catalysts, Nat. Commun. 2015, 6, 6099.CrossRefGoogle Scholar
  6. [6]
    Kang, L. X.; Hu, Y.; Zhong, H.; Si, J.; Zhang, S. C.; Zhao, Q. C.; Lin, J. J.; Li, Q. W.; Zhang, Z. Y.; Peng, L. M. et al. et al., Large-area growth of ultra-high-density single-walled carbon nanotube arrays on sapphire surface, Nano Res. 2015, 8, 3694–3703.CrossRefGoogle Scholar
  7. [7]
    Zhou, W. W.; Ding, L.; Yang, S.; Liu, J. et al., Synthesis of highdensity, large-diameter, and aligned single-walled carbon nanotubes by multiple-cycle growth methods, ACS Nano 2011, 5, 3849–3857.CrossRefGoogle Scholar
  8. [8]
    Hong, S. W.; Banks, T.; Rogers, J. A. et al., Improved density in aligned arrays of single-walled carbon nanotubes by sequential chemical vapor deposition on quartz, Adv. Mater. 2010, 22, 1826–1830.CrossRefGoogle Scholar
  9. [9]
    Shulaker, M. M.; Wei, H.; Payne, J.; Provine, J.; Chen, H. Y.; Philip Wong, H. S.; Mitra, S. et al., Linear increases in carbon nanotube density through multiple transfer technique, Nano Lett. 2011, 11, 1881–1886.CrossRefGoogle Scholar
  10. [10]
    Engel, M.; Small, J. P.; Steiner, M.; Freitag, M.; Green, A. A.; Hersam, M. C.; Avouris, P. et al., Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays, ACS Nano 2008, 2, 2445–2452.CrossRefGoogle Scholar
  11. [11]
    Shekhar, S.; Stokes, P.; Khondaker, S. I. et al., Ultrahigh density alignment of carbon nanotube arrays by dielectrophoresis, ACS Nano 2011, 5, 1739–1746.CrossRefGoogle Scholar
  12. [12]
    Cao, Q.; Han, S. J.; Tulevski, G. S. et al., Fringing-field dielectrophoretic assembly of ultrahigh-density semiconducting nanotube arrays with a self-limited pitch, Nat. Commun. 2014, 5, 5071.CrossRefGoogle Scholar
  13. [13]
    Brady, G. J.; Way, A. J.; Safron, N. S.; Evensen, H. T.; Gopalan, P.; Arnold, M. S. et al., Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs, Sci. Adv. 2016, 2, e1601240.CrossRefGoogle Scholar
  14. [14]
    Zhou, W. W.; Zhan, S. T.; Ding, L.; Liu, J. et al., General rules for selective growth of enriched semiconducting single walled carbon nanotubes with water vapor as in situ etchant, J. Am. Chem. Soc. 2012, 134, 14019–14026.CrossRefGoogle Scholar
  15. [15]
    Yang, F.; Wang, X.; Zhang, D. Q.; Yang, J.; Luo, D.; Xu, Z. W.; Wei, J. K.; Wang, J. Q.; Xu, Z.; Peng, F. et al. et al., Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts, Nature 2014, 510, 522–524.CrossRefGoogle Scholar
  16. [16]
    Kang, L. X.; Zhang, S. C.; Li, Q. W.; Zhang, J. et al., Growth of horizontal semiconducting SWNT arrays with density higher than 100 Tubes/µm using ethanol/methane chemical vapor deposition, J. Am. Chem. Soc. 2016, 138, 6727–6730.CrossRefGoogle Scholar
  17. [17]
    Collins, P. G.; Arnold, M. S.; Avouris, P. et al., Engineering carbon nanotubes and nanotube circuits using electrical breakdown, Science 2001, 292, 706–709.CrossRefGoogle Scholar
  18. [18]
    Zhang, G. Y.; Qi, P. F.; Wang, X. R.; Lu, Y. R.; Li, X. L.; Tu, R.; Bangsaruntip, S.; Mann, D.; Zhang, L.; Dai, H. J. et al., Selective etching of metallic carbon nanotubes by gas-phase reaction, Science 2006, 314, 974–977.CrossRefGoogle Scholar
  19. [19]
    Jin, S. H.; Dunham, S. N.; Song, J. Z.; Xie, X.; Kim, J.-H.; Lu, C. F.; Islam, A.; Du, F.; Kim, J.; Felts, J. et al. et al., Using nanoscale thermocapillary flows to create arrays of purely semiconducting single-walled carbon nanotubes, Nat. Nanotechnol. 2013, 8, 347–355.CrossRefGoogle Scholar
  20. [20]
    Li, J. H.; Franklin, A. D.; Liu, J. et al., Gate-free electrical breakdown of metallic pathways in single-walled carbon nanotube crossbar networks, Nano Lett. 2015, 15, 6058–6065.CrossRefGoogle Scholar
  21. [21]
    Shulaker, M. M.; Pitner, G.; Hills, G.; Giachino, M.; Philip Wong, H.-S.; Mitra, S. High-performance carbon nanotube field-effect transistors. In 2014 IEEE International Electron Devices Meeting, San Francisco, CA,2014, pp 33.6.1–33.6.4.Google Scholar
  22. [22]
    Shulaker, M. M.; Van Rethy, J.; Hills, G.; Wei, H.; Chen, H.-Y.; Gielen, G.; Philip Wong, H.-S.; Mitra, S. et al., Sensor-todigital interface built entirely with carbon nanotube FETs, IEEE J. Solid-State Circ. 2014, 49, 190–201.CrossRefGoogle Scholar
  23. [23]
    Patil, N.; Lin, A.; Zhang, J.; Wei, H.; Anderson, K.; Philip Wong, H.-S.; Mitra, S. et al., Scalable carbon nanotube computational and storage circuits immune to metallic and mispositioned carbon nanotubes, IEEE Trans. Nanotechnol. 2011, 10, 744–750.CrossRefGoogle Scholar
  24. [24]
    Shulaker, M. M.; Van Rethy, J.; Wu, T. F.; Suriyasena Liyanage, L.; Wei, H.; Li, Z. Y.; Pop, E.; Gielen, G.; Philip Wong, H.-S.; Mitra, S. et al., Carbon nanotube circuit integration up to Sub-20 nm channel lengths, ACS Nano 2014, 8, 3434–3443.CrossRefGoogle Scholar
  25. [25]
    Pop, E. et al., The role of electrical and thermal contact resistance for joule breakdown of single-wall carbon nanotubes, Nanotechnology 2008, 19, 295202.CrossRefGoogle Scholar
  26. [26]
    Otsuka, K.; Inoue, T.; Chiashi, S.; Maruyama, S. et al., Selective removal of metallic single-walled carbon nanotubes in full length by organic film-assisted electrical breakdown, Nanoscale 2014, 6, 8831–8835.CrossRefGoogle Scholar
  27. [27]
    Liao, A.; Alizadegan, R.; Ong, Z.-Y.; Dutta, S.; Xiong, F.; Hsia, K. J.; Pop, E. et al., Thermal dissipation and variability in electrical breakdown of carbon nanotube devices, Phys. Rev. B 2010, 82, 205406.CrossRefGoogle Scholar
  28. [28]
    Xie, X.; Grosse, K. L.; Song, J. Z.; Lu, C. F.; Dunham, S.; Du, F.; Islam, A. E.; Li, Y. H.; Zhang, Y. H.; Pop, E. et al. et al., Quantitative thermal imaging of single-walled carbon nanotube devices by scanning joule expansion microscopy, ACS Nano 2012, 6, 10267–10275.CrossRefGoogle Scholar
  29. [29]
    Otsuka, K.; Inoue, T.; Shimomura, Y.; Chiashi, S.; Maruyama, S. et al., Field emission and anode etching during formation of length-controlled nanogaps in electrical breakdown of horizontally aligned single-walled carbon nanotubes, Nanoscale 2016, 8, 16363–16370.CrossRefGoogle Scholar
  30. [30]
    Homma, Y.; Chiashi, S.; Yamamoto, T.; Kono, K.; Matsumoto, D.; Shitaba, J.; Sato, S. et al., Photoluminescence measurements and molecular dynamics simulations of water adsorption on the hydrophobic surface of a carbon nanotube in water vapor, Phys. Rev. Lett. 2013, 110, 157402.CrossRefGoogle Scholar
  31. [31]
    Cao, Q.; Xia, M. G.; Kocabas, C.; Shim, M.; Rogers, J. A.; Rotkin, S. V. et al., Gate capacitance coupling of singled-walled carbon nanotube thin-film transistors, Appl. Phys. Lett. 2007, 90, 23516.CrossRefGoogle Scholar
  32. [32]
    Wahab, M. A.; Alam, M. A. et al., Implications of electrical crosstalk for high density aligned array of single-wall carbon nanotubes, IEEE Trans. Electron Dev. 2014, 61, 4273–4281.CrossRefGoogle Scholar
  33. [33]
    Deng, S. B.; Tang, J. Y.; Kang, L. X.; Hu, Y.; Yao, F. R.; Zhao, Q. C.; Zhang, S. C.; Liu, K. H.; Zhang, J. et al., Highthroughput determination of statistical structure information for horizontal carbon nanotube arrays by optical imaging, Adv. Mater. 2016, 28, 2018–2023.CrossRefGoogle Scholar
  34. [34]
    Matsui, K.; Tsuji, H.; Makino, A. A further study of the effects of water vapor concentration on the rate of combustion of an artificial graphite in humid air flow. Combust. Flame 1986, 63, 415–427.CrossRefGoogle Scholar
  35. [35]
    Jensen, G. A. et al., The kinetics of gasification of carbon contained in coal minerals at atmospheric pressure, Ind. Eng. Chem. Process Des. Dev. 1975, 14, 308–314.CrossRefGoogle Scholar
  36. [36]
    Ong, Z.-Y.; Pop, E. et al., Molecular dynamics simulation of thermal boundary conductance between carbon nanotubes and SiO2, Phys. Rev. B 2010, 81, 155408.CrossRefGoogle Scholar
  37. [37]
    Chiashi, S.; Hanashima, T.; Mitobe, R.; Nagatsu, K.; Yamamoto, T.; Homma, Y. et al., Water encapsulation control in individual single-walled carbon nanotubes by laser irradiation, J. Phys. Chem. Lett. 2014, 5, 408–412.CrossRefGoogle Scholar
  38. [38]
    Kim, W.; Javey, A.; Vermesh, O.; Wang, Q.; Li, Y. M.; Dai, H. J. et al., Hysteresis caused by water molecules in carbon nanotube field-effect transistors, Nano Lett. 2003, 3, 193–198.CrossRefGoogle Scholar
  39. [39]
    Choi, W.; Hong, S.; Abrahamson, J. T.; Han, J.-H.; Song, C.; Nair, N.; Baik, S.; Strano, M. S. et al., Chemically driven carbon-nanotube-guided thermopower waves, Nat. Mater. 2010, 9, 423–429.CrossRefGoogle Scholar
  40. [40]
    Pop, E.; Mann, D. A.; Wang, Q.; Goodson, K.; Dai, H. J. et al., Thermal conductance of an individual single-wall carbon nanotube above room temperature, Nano Lett. 2006, 6, 96–100.CrossRefGoogle Scholar
  41. [41]
    Hida, S.; Hori, T.; Shiga, T.; Elliott, J.; Shiomi, J. et al., Thermal resistance and phonon scattering at the interface between carbon nanotube and amorphous polyethylene, Int. J. Heat Mass Transf. 2013, 67, 1024–1029.CrossRefGoogle Scholar
  42. [42]
    Hirata, T.; Kashiwagi, T.; Brown, J. E. et al., Thermal and oxidative degradation of poly(methyl methacrylate): Weight loss, Macromolecules 1985, 18, 1410–1418.CrossRefGoogle Scholar
  43. [43]
    Maruyama, S. A molecular dynamics simulation of heat conduction in finite length SWNTs. Phys. B: Condens. Matter 2002, 323, 193–195.CrossRefGoogle Scholar
  44. [44]
    Maruyama, S.; Kojima, R.; Miyauchi, Y.; Chiashi, S.; Kohno, M. et al., Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol, Chem. Phys. Lett. 2002, 360, 229–234.CrossRefGoogle Scholar
  45. [45]
    Inoue, T.; Hasegawa, D.; Badar, S.; Aikawa, S.; Chiashi, S.; Maruyama, S. et al., Effect of gas pressure on the density of horizontally aligned single-walled carbon nanotubes grown on quartz substrates, J. Phys. Chem. C 2013, 117, 11804–11810.CrossRefGoogle Scholar
  46. [46]
    Jiao, L. Y.; Fan, B.; Xian, X. J.; Wu, Z. Y.; Zhang, J.; Liu, Z. F. et al., Creation of nanostructures with poly(methyl methacrylate)-mediated nanotransfer printing, J. Am. Chem. Soc. 2008, 130, 12612–12613.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Keigo Otsuka
    • 1
  • Taiki Inoue
    • 1
  • Yuki Shimomura
    • 1
  • Shohei Chiashi
    • 1
  • Shigeo Maruyama
    • 1
    • 2
  1. 1.Department of Mechanical EngineeringThe University of TokyoTokyoJapan
  2. 2.Energy NanoEngineering Lab.National Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan

Personalised recommendations