Nano Research

, Volume 10, Issue 9, pp 3238–3247 | Cite as

Giant enhancement and anomalous temperature dependence of magnetism in monodispersed NiPt2 nanoparticles

Research Article


A simple yet general one-step solvothermal method is applied to synthesize sub-7 nm monodispersed single-crystal NiPt2 nanoparticles (NPs) with the morphology of truncated octahedrons in the alloying state of disordered atomic arrangements. The effective magnetic moments of these NPs exhibit an anomalous temperature dependency, increasing from approximately 0.9 μB/atom at 15 K to 1.9 μB/atom at 300 K. This is an increase by a factor of more than three compared with bulk Ni. On the basis of experiments involving X-ray absorption near-edge spectroscopy of the L3 edge for Pt and density functional theory calculations, the observed novel magnetism enhancement and its anomalous temperature dependence are attributed to the electron transfer arising from the thermal-activation effects.


NiPt2 nanoparticles magnetism X-ray absorption near-edge spectroscopy density functional theory calculations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Authors acknowledge Dr. Lirong Zheng for his XANES experimental support at the XAFS station in 1W1B beamline of BSRF and useful discussion. This work is supported by the National Natural Science Foundation of China (Nos. 11674008, 11674023, 21576008, 91334203, 51371015 and 51331002), the Beijing Natural Science Foundation (No. 2142018) and Beijing Municipal Science and Technology Project (No. Z17111000220000).

Supplementary material

12274_2017_1643_MOESM1_ESM.pdf (1.3 mb)
Giant enhancement and anomalous temperature dependence of magnetism in monodispersed NiPt2 nanoparticles


  1. [1]
    Gilroy, K. D.; Ruditskiy, A.; Peng, H. C.; Qin, D.; Xia, Y. N. Bimetallic nanocrystals: Syntheses, properties, and applications. Chem. Rev. 2016, 116, 10414–10472.CrossRefGoogle Scholar
  2. [2]
    Wang, D. S.; Li, Y. D. Bimetallic nanocrystals: Liquidphase synthesis and catalytic applications. Adv. Mater. 2011, 23, 1044–1060.CrossRefGoogle Scholar
  3. [3]
    Huang, X. Q.; Zhao, Z. P.; Cao, L.; Chen, Y.; Zhu, E. B.; Lin, Z. Y.; Li, M. F.; Yan, A. M.; Zettl, A.; Wang, Y. M. et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230–1234.CrossRefGoogle Scholar
  4. [4]
    Shan, A. X.; Chen, Z. C.; Li, B. Q.; Chen, C. P.; Wang, R. M. Monodispersed, ultrathin NiPt hollow nanospheres with tunable diameter and composition via a green chemical synthesis. J. Mater. Chem. A 2015, 3, 1031–1036.CrossRefGoogle Scholar
  5. [5]
    Dubau, L.; Nelayah, J.; Moldovan, S.; Ersen, O.; Bordet, P.; Drnec, J.; Asset, T.; Chattot, R.; Maillard, F. Defects do catalysis: CO monolayer oxidation and oxygen reduction reaction on hollow PtNi/C nanoparticles. ACS Catal. 2016, 6, 4673–4684.CrossRefGoogle Scholar
  6. [6]
    Alloyeau, D.; Ricolleau, C.; Mottet, C.; Oikawa, T.; Langlois, C.; Le Bouar, Y.; Braidy, N.; Loiseau, A. Size and shape effects on the order–disorder phase transition in CoPt nanoparticles. Nat. Mater. 2009, 8, 940–946.CrossRefGoogle Scholar
  7. [7]
    Chiang, I. C.; Chen, D. H. Synthesis of monodisperse FeAu nanoparticles with tunable magnetic and optical properties. Adv. Funct. Mater. 2007, 17, 1311–1316.CrossRefGoogle Scholar
  8. [8]
    Beille, J.; Bloch, D.; Besnus, M. J. Itinerant ferromagnetism and susceptibility of nickel-platinum alloys. J. Phys. F: Metal. Phys. 1974, 4, 1275–1284.CrossRefGoogle Scholar
  9. [9]
    Parra, R. E.; Cable, J. W. Neutron study of magneticmoment distribution in Ni-Pt alloys. Phys. Rev. B 1980, 21, 5494–5504.CrossRefGoogle Scholar
  10. [10]
    Alberts, H. L.; Beille, J.; Bloch, D.; Wohlfarth, E. P. Ferromagnetic properties at high fields and high-pressures of nickel-platinum alloys near the critical concentration for ferromagnetism. Phys. Rev. B 1974, 9, 2233–2243.CrossRefGoogle Scholar
  11. [11]
    Kumar, U.; Mukhopadhyay, P. K.; Sanyal, B.; Eriksson, O.; Nordblad, P.; Paudyal, D.; Tarafder, K.; Mookerjee, A. Experimental and theoretical study of annealed Ni-Pt alloys. Phys. Rev. B 2006, 74, 064401.CrossRefGoogle Scholar
  12. [12]
    Kumar, U.; Padmalekha, K. G.; Mukhopadhyay, P. K.; Paudyal, D.; Mookerjee, A. Magnetic transition in NiPt alloy systems: Experiment and theory. J. Magn. Magn. Mater. 2005, 292, 234–240.CrossRefGoogle Scholar
  13. [13]
    Ahrenstorf, K.; Albrecht, O.; Heller, H.; Kornowski, A.; Görlitz, D.; Weller, H. Colloidal synthesis of NixPt1–x nanoparticles with tuneable composition and size. Small 2007, 3, 271–274.CrossRefGoogle Scholar
  14. [14]
    Zitoun, D.; Respaud, M.; Fromen, M. C.; Casanove, M. J.; Lecante, P.; Amiens, C.; Chaudret, B. Magnetic enhancement in nanoscale CoRh particles. Phys. Rev. Lett. 2002, 89, 037203.CrossRefGoogle Scholar
  15. [15]
    Zhang, D. F.; Zhang, Q.; Huang, W. F.; Guo, L.; Chen, W. M.; Chu, W. S.; Chen, C. P.; Wu, Z. Y. Low-temperature fabrication of Au-Co cluster mixed nanohybrids with high magnetic moment of Co. ACS Appl. Mater. Interfaces 2012, 4, 5643–5649.CrossRefGoogle Scholar
  16. [16]
    Dupuis, V.; Khadra, G.; Linas, S.; Hillion, A.; Gragnaniello, L.; Tamion, A.; Tuaillon-Combes, J.; Bardotti, L.; Tournus, F.; Otero, E. et al. Magnetic moments in chemically ordered mass-selected CoPt and FePt clusters. J. Magn. Magn. Mater. 2015, 383, 73–77.CrossRefGoogle Scholar
  17. [17]
    Bhagat, S. M.; Lucas, C. W., Jr. New technique for measurement of the temperature dependence of the saturation magnetization-nickel. Rev. Sci. Instrum. 1968, 39, 255–256.CrossRefGoogle Scholar
  18. [18]
    Wu, H.; Zhang, R.; Liu, X. X.; Lin, D. D.; Pan, W. Electrospinning of Fe, Co, and Ni nanofibers: Synthesis, assembly, and magnetic properties. Chem. Mater. 2007, 19, 3506–3511.CrossRefGoogle Scholar
  19. [19]
    Neugebauer, C. A. Temperature dependence of the saturation magnetization of nickel films of thickness less than 100a. J. Appl. Phys. 1960, 31, S152–S153.CrossRefGoogle Scholar
  20. [20]
    Huang, L. F.; Shan, A. X.; Li, Z. P.; Chen, C. P.; Wang, R. M. Phase formation, magnetic and optical properties of epitaxially grown icosahedral Au@Ni nanoparticles with ultrathin shells. CrystEngComm 2013, 15, 2527–2531.CrossRefGoogle Scholar
  21. [21]
    Billas, I. M. L.; Châtelain, A.; De Heer, W. A. Magnetism from the atom to the bulk in iron, cobalt, and nickel clusters. Science 1994, 265, 1682–1684.CrossRefGoogle Scholar
  22. [22]
    Wang, D. L.; Xin, H. L.; Hovden, R.; Wang, H. S.; Yu, Y. C.; Muller, D. A.; DiSalvo, F. J.; Abruña, H. D. Structurally ordered intermetallic platinum-cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 2013, 12, 81–87.CrossRefGoogle Scholar
  23. [23]
    Wilhelm, F.; Poulopoulos, P.; Srivastava, P.; Wende, H.; Farle, M.; Baberschke, K.; Angelakeris, M.; Flevaris, N. K.; Grange, W.; Kappler, J. P. et al. Magnetic anisotropy energy and the anisotropy of the orbital moment of Ni in Ni/Pt multilayers. Phys. Rev. B 2000, 61, 8647–8650.CrossRefGoogle Scholar
  24. [24]
    Mandal, M.; Kundu, S.; Sau, T. K.; Yusuf, S. M.; Pal, T. Synthesis and characterization of superparamagnetic Ni-Pt nanoalloy. Chem. Mater. 2003, 15, 3710–3715.CrossRefGoogle Scholar
  25. [25]
    He, L.; Zheng, W. Z.; Zhou, W.; Du, H. L.; Chen, C. P.; Guo, L. Size-dependent magnetic properties of nickel nanochains. J. Phys.: Condens. Matter 2007, 19, 036216.Google Scholar
  26. [26]
    Zhou, W.; He, L.; Cheng, R.; Guo, L.; Chen, C. P.; Wang, J. L. Synthesis of Ni nanochains with various sizes: The magnetic and catalytic properties. J. Phys. Chem. C 2009, 113, 17355–17358.CrossRefGoogle Scholar
  27. [27]
    Zhao, F. F.; Liu, C.; Wang, P.; Huang, S. P.; Tian, H. P. First-principles investigations of the structural, electronic, and magnetic properties of Pt13–nNin clusters. J. Alloys Compd. 2013, 577, 669–676.CrossRefGoogle Scholar
  28. [28]
    Nlebedim, I. C.; Melikhov, Y.; Jiles, D. C. Temperature dependence of magnetic properties of heat treated cobalt ferrite. J. Appl. Phys. 2014, 115, 043903.CrossRefGoogle Scholar
  29. [29]
    Chen, W. M.; Chen, C. P.; Guo, L. Field-dependent lowfield enhancement in effective paramagnetic moment with nanoscaled Co3O4. J. Appl. Phys. 2010, 108, 073907.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of PhysicsPeking UniversityBeijingChina
  2. 2.State Key Laboratory of Organic-Inorganic CompositesBeijing University of Chemical TechnologyBeijingChina
  3. 3.Beijing National Laboratory for Condensed Matter PhysicsInstitute of Physics Chinese Academy of SciencesBeijingChina
  4. 4.School of Mathematics and PhysicsUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations