Nano Research

, Volume 11, Issue 1, pp 225–232 | Cite as

Strain-induced band gap engineering in layered TiS3

  • Robert Biele
  • Eduardo Flores
  • Jose Ramón Ares
  • Carlos Sanchez
  • Isabel J. Ferrer
  • Gabino Rubio-Bollinger
  • Andres Castellanos-Gomez
  • Roberto D’Agosta
Research Article


By combining ab initio calculations and experiments, we demonstrate how the band gap of the transition metal trichalcogenide TiS3 can be modified by inducing tensile or compressive strain. In addition, using our calculations, we predicted that the material would exhibit a transition from a direct to an indirect band gap upon application of a compressive strain in the direction of easy electrical transport. The ability to control the band gap and its nature could have a significant impact on the use of TiS3 for optical applications. We go on to verify our prediction via optical absorption experiments that demonstrate a band gap increase of up to 9% (from 0.99 to 1.08 eV) upon application of tensile stress along the easy transport direction.


band gap engineering titanium trisulfide 2-D materials strain 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



R. B. and R. D’A. acknowledge financial support by the projects DYN-XC-TRANS (No. FIS2013-43130-P), SELECT-DFT (No. FIS2016-79464-P), the Grupo Consolidado UPV/EHU del Gobierno Vasco (No. IT578-13), and NANOTherm (No. CSD2010-00044) of the Ministerio de Economia y Competitividad (MINECO). R. B. acknowledges the financial support of Ministerio de Educacion, Cultura y Deporte (No. FPU12/01576). R. D’A. is grateful to the Physics Department of King’s College London for its hospitality during the completion of this work supported by the Grant No. MV- 2015-1-17 of the Diputacion Foral de Guipuzkoa. A.C.-G. acknowledges financial support from the European Commission under the Graphene Flagship, contract CNECTICT-604391 and from the MINECO (Ramón y Cajal 2014 program RYC-2014- 01406 and MAT2014-58399-JIN) and from the Comunidad de Madrid (MAD2D-CM Program (S2013/MIT-3007)). G. R.-B. acknowledges financial support from the Grant No. MAT2014-57915-R from the MINECO. The MIRE group acknowledge financial support from MINECO (No. MAT2015-65203R) and E. F. thanks the Mexican National Council for Science and Technology (CONACyT) for providing a PhD. Grant.


  1. [1]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.CrossRefGoogle Scholar
  2. [2]
    Cahangirov, S.; Topsakal, M.; Aktürk, E.; Şahin, H.; Ciraci, S. Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 2009, 102, 236804.CrossRefGoogle Scholar
  3. [3]
    Yang, K. K.; Chen, Y. P.; D’Agosta, R.; Xie, Y. E.; Zhong, J. X.; Rubio, A. Enhanced thermoelectric properties in hybrid graphene/boron nitride nanoribbons. Phys. Rev. B 2012, 86, 045425.CrossRefGoogle Scholar
  4. [4]
    Cahangirov, S.; Audiffred, M.; Tang, P. Z.; Iacomino, A.; Duan, W. H.; Merino, G.; Rubio, A. Electronic structure of silicene on Ag(111): Strong hybridization effects. Phys. Rev. B 2013, 88, 035432.CrossRefGoogle Scholar
  5. [5]
    Flores, E.; Ares, J. R.; Ferrer, I. J.; Sánchez, C. Synthesis and characterization of a family of layered trichalcogenides for assisted hydrogen photogeneration. Phys. Status Solidi- Rapid Res. Lett. 2016, 10, 802–806.CrossRefGoogle Scholar
  6. [6]
    Ferrer, I. J.; Ares, J. R.; Clamagirand, J. M.; Barawi, M.; Sánchez, C. Optical properties of titanium trisulphide (TiS3) thin films. Thin Solid Films 2013, 535, 398–401.CrossRefGoogle Scholar
  7. [7]
    Island, J. O.; Buscema, M.; Barawi, M.; Clamagirand, J. M.; Ares, J. R.; Sánchez, C.; Ferrer, I. J.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. Ultrahigh photoresponse of few-layer TiS3 nanoribbon transistors. Adv. Opt. Mater. 2014, 2, 641–645.CrossRefGoogle Scholar
  8. [8]
    Island, J. O.; Barawi, M.; Biele, R.; Almazán, A.; Clamagirand, J. M.; Ares, J. R.; Sánchez, C.; van der Zant, H. S. J.; Álvarez, J. V.; D’Agosta, R. et al. TiS3 Transistors with tailored morphology and electrical properties. Adv. Mater. 2015, 27, 2595–2601.CrossRefGoogle Scholar
  9. [9]
    Molina-Mendoza, A. J.; Barawi, M.; Biele, R.; Flores, E.; Ares, J. R.; Sánchez, C.; Rubio-Bollinger, G.; Agraït, N.; D’Agosta, R.; Ferrer, I. J. et al. Electronic bandgap and exciton binding energy of layered semiconductor TiS3. Adv. Electron. Mater. 2015, 1, 1500126.CrossRefGoogle Scholar
  10. [10]
    Wu, J.; Wang, D.; Liu, H.; Lau, W. M.; Liu, L. M. An ab initio study of TiS3: A promising electrode material for rechargeable Li and Na ion batteries. Rsc Adv. 2015, 5, 21455–21463.CrossRefGoogle Scholar
  11. [11]
    Barawi, M.; Flores, E.; Ferrer, I. J.; Ares, J. R.; Sánchez, C. Titanium trisulphide (TiS3) nanoribbons for easy hydrogen photogeneration under visible light. J. Mater. Chem. A 2015, 3, 7959–7965.CrossRefGoogle Scholar
  12. [12]
    Jin, Y. D.; Li, X. X.; Yang, J. L. Single layer of MX3 (M = Ti, Zr; X = S, Se, Te): A new platform for nano-electronics and optics. Phys. Chem. Chem. Phys. 2015, 17, 18665–18669.CrossRefGoogle Scholar
  13. [13]
    Gorlova, I. G.; Zybtsev, S. G.; Pokrovskii, V. Y.; Bolotina, N. B.; Verin, I. A.; Titov, A. N. Nonlinear conductivity of quasi-one-dimensional layered compound TiS3. Phys. B: Condens. Matter 2012, 407, 1707–1710.CrossRefGoogle Scholar
  14. [14]
    Dai, J.; Zeng, X. C. Titanium trisulfide monolayer: Theoretical prediction of a new direct-gap semiconductor with high and anisotropic carrier mobility. Angew. Chem., Int. Ed. 2015, 54, 7572–7576.CrossRefGoogle Scholar
  15. [15]
    Iyikanat, F.; Sahin, H.; Senger, R. T.; Peeters, F. M. Vacancy formation and oxidation characteristics of single layer TiS3. J. Phys. Chem. C 2015, 119, 10709–10715.CrossRefGoogle Scholar
  16. [16]
    Aierken, Y.; Çakır, D.; Peeters, F. M. Strain enhancement of acoustic phonon limited mobility in monolayer TiS3. Phys. Chem. Chem. Phys. 2016, 18, 14434–14441.CrossRefGoogle Scholar
  17. [17]
    Kang, J.; Wang, L. W. Robust band gap of TiS3 nanofilms. Phys. Chem. Chem. Phys. 2016, 18, 14805–14809.CrossRefGoogle Scholar
  18. [18]
    Li, M.; Dai, J.; Zeng, X. C. Tuning the electronic properties of transition-metal trichalcogenides via tensile strain. Nanoscale 2015, 7, 15385–15391.CrossRefGoogle Scholar
  19. [19]
    Kang, J.; Sahin, H.; Ozaydin, H. D.; Senger, R. T.; Peeters, F. M. TiS3 nanoribbons: Width-independent band gap and strain-tunable electronic properties. Phys. Rev. B 2015, 92, 75413.CrossRefGoogle Scholar
  20. [20]
    Kang, J.; Sahin, H.; Peeters, F. M. Mechanical properties of monolayer sulphides: A comparative study between MoS2, HfS2 and TiS3. Phys. Chem. Chem. Phys. 2015, 17, 27742–27749.CrossRefGoogle Scholar
  21. [21]
    Li, X. R.; Dai, Y.; Li, M. M.; Wei, W.; Huang, B. B. Stable Si-based pentagonal monolayers: High carrier mobilities and applications in photocatalytic water splitting. J. Mater. Chem. A 2015, 3, 24055–24063.CrossRefGoogle Scholar
  22. [22]
    Li, X. R.; Dai, Y.; Ma, Y. D.; Liu, Q. Q.; Huang, B. B. Intriguing electronic properties of two-dimensional MoS2/ TM2 CO2 (TM = Ti, Zr, or Hf) hetero-bilayers: Type-II semiconductors with tunable band gaps. Nanotechnology 2015, 26, 135703.CrossRefGoogle Scholar
  23. [23]
    Yun, W. S.; Han, S. W.; Hong, S. C.; Kim, I. G.; Lee, J. D. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M= Mo, W; X=S, Se, Te). Phys. Rev. B 2012, 85, 033305.CrossRefGoogle Scholar
  24. [24]
    Conley, H. J.; Wang, B.; Ziegler, J. I.; Haglund, R. F., Jr.; Pantelides, S. T.; Bolotin, K. I. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 2013, 13, 3626–3630.CrossRefGoogle Scholar
  25. [25]
    Wang, C.; Xia, Q. L.; Nie, Y. Z.; Rahman, M.; Guo, G. H. Strain engineering band gap, effective mass and anisotropic dirac-like cone in monolayer arsenene. AIP Adv. 2016, 6, 035204.CrossRefGoogle Scholar
  26. [26]
    Island, J. O.; Molina-Mendoza, A. J.; Barawi, M.; Biele, R.; Flores, E.; Clamagirand, J. M.; Ares, J. R.; Sanchez, C.; van der Zant, H. S. J.; D’Agosta, R. et al. Electronics and optoelectronics of quasi-one dimensional layered transition metal trichalcogenides. 2D Materials 2017, 4, 022003.CrossRefGoogle Scholar
  27. [27]
    Roldán, R.; Castellanos-Gomez, A.; Cappelluti, E.; Guinea, F. Strain engineering in semiconducting two-dimensional crystals. J. Phys. Condens. Matter 2015, 27, 313201.CrossRefGoogle Scholar
  28. [28]
    Castellanos-Gomez, A.; Roldán, R.; Cappelluti, E.; Buscema, M.; Guinea, F.; van der Zant, H. S. J.; Steele, G. A. Local strain engineering in atomically thin MoS2. Nano Lett. 2013, 13, 5361–5366.CrossRefGoogle Scholar
  29. [29]
    Yang, S. X.; Wang, C.; Sahin, H.; Chen, H.; Li, Y.; Li, S. S.; Suslu, A.; Peeters, F. M.; Liu, Q.; Li, J.B. et al. Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering. Nano Lett. 2015, 15, 1660–1666.CrossRefGoogle Scholar
  30. [30]
    Mei, H. X.; Landis, C. M.; Huang, R. Concomitant wrinkling and buckle-delamination of elastic thin films on compliant substrates. Mech. Mater. 2011, 43, 627–642.CrossRefGoogle Scholar
  31. [31]
    Vella, D.; Bico, J.; Boudaoud, A.; Roman, B.; Reis, P. M. The macroscopic delamination of thin films from elastic substrates. Proc. Natl. Acad. Sci. USA 2009, 106, 10901–10906.CrossRefGoogle Scholar
  32. [32]
    Castellanos-Gomez, A.; Quereda, J.; van der Meulen, H. P.; Agraït, N.; Rubio-Bollinger, G. Spatially resolved optical absorption spectroscopy of single- and few-layer MoS2 by hyperspectral imaging. Nanotechnology 2016, 27, 115705.CrossRefGoogle Scholar
  33. [33]
    Guan, J.; Song, W. S.; Yang, L.; Tománek, D. Straincontrolled fundamental gap and structure of bulk black phosphorus. Phys. Rev. B 2016, 94, 045414.CrossRefGoogle Scholar
  34. [34]
    Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 2009, 21, 395502.CrossRefGoogle Scholar
  35. [35]
    Hartwigsen, C.; Goedecker, S.; Hutter, J. Relativistic separable dual-space gaussian pseudopotentials from H to Rn. Phys. Rev. B 1998, 58, 3641–3662.CrossRefGoogle Scholar
  36. [36]
    Goedecker, S.; Teter, M.; Hutter, J. Separable dual-space gaussian pseudopotentials. Phys. Rev. B 1996, 54, 1703–1710.CrossRefGoogle Scholar
  37. [37]
    Furuseth, S.; Brattas, L.; Kjejshus, A. On the crystal structures of TiS3, ZrS3, ZrSe3, ZrTe3, HfS3, and HfSe3. Acta Chem. Scand. 1975, 29, 623–631.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  • Robert Biele
    • 1
  • Eduardo Flores
    • 2
  • Jose Ramón Ares
    • 2
  • Carlos Sanchez
    • 2
    • 3
  • Isabel J. Ferrer
    • 2
    • 3
  • Gabino Rubio-Bollinger
    • 3
    • 4
  • Andres Castellanos-Gomez
    • 5
  • Roberto D’Agosta
    • 1
    • 6
  1. 1.Nano-Bio Spectroscopy Group and European Theoretical Spectroscopy Facility (ETSF)Universidad del País VascoSan SebastiánSpain
  2. 2.Materials of Interest in Renewable Energies Group (MIRE Group), Dpto. de Física de MaterialesUniversidad Autónoma de MadridMadridSpain
  3. 3.Instituto de Ciencia de Materiales “Nicolás Cabrera”, Campus de CantoblancoMadridSpain
  4. 4.Dpto. de Física de la Materia Condensada, Condensed Matter Physics Center (IFIMAC)Universidad Autónoma de Madrid, Campus de CantoblancoMadridSpain
  5. 5.Instituto de Ciencia de los Materiales de Madrid (ICMM-CSIC), CantoblancoMadridSpain
  6. 6.IKERBASQUEBasque Foundation for ScienceBilbaoSpain

Personalised recommendations