Nano Research

, Volume 10, Issue 9, pp 3228–3237 | Cite as

N-doped carbon-stabilized PtCo nanoparticles derived from Pt@ZIF-67: Highly active and durable catalysts for oxygen reduction reaction

Research Article


The development of catalysts with high activity and durability for the cathodic oxygen reduction reaction (ORR) in both alkaline and acidic media is important for improving the performance of the proton exchange membrane (PEM) fuel cells. This can be achieved by dispersing Pt-based alloy nanoparticles inside N-doped porous carbon frameworks. However, it still requires the development of a facile method towards synthesizing this unique hybrid structure. In this work, we demonstrate that N-doped carbon-stabilized PtCo nanoparticles (PtCo@NC) can be facilely synthesized via thermal decomposition of Pt-incorporated Co-based zeolitic imidazolate framework (Pt@ZIF-67). The thickness of the carbon framework can be optimized to enable excellent durability, in sharp contrast to a commercial Pt/C catalyst. The mass activities achieved by optimizing the thickness of the carbon framework are 0.80 and 0.82 A·mgPt –1 at 0.9 V vs. RHE in alkaline and acidic electrolytes, respectively, which are nearly 8 times greater than those of the Pt/C. This work provides an alternative approach to low-cost and high-performance catalysts for both alkaline and acidic fuel cells.


oxygen reduction reaction PtCo nanoparticles ZIF-67 N-doped carbon metal organic frameworks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Natural Science Foundation of China (Nos. 21471141, U1532135, 21573212, and 21601173), CAS Key Research Program of Frontier Sciences (No. QYZDB-SSWSLH018), CAS Interdisciplinary Innovation Team, Recruitment Program of Global Experts, CAS Hundred Talent Program, Anhui Provincial Natural Science Foundation (Nos. 1608085QB24 and 1508085MB24), Natural Science Foundation of Anhui Education Department (No. 2015KJ015) and Fuyang Normal College Natural Science Foundation (No. 2013FSKJ21).

Supplementary material

12274_2017_1611_MOESM1_ESM.pdf (4.8 mb)
N-doped carbon-stabilized PtCo nanoparticles derived from Pt@ZIF-67: Highly active and durable catalysts for oxygen reduction reaction


  1. [1]
    Huang, X. Q.; Zhao, Z. P.; Cao, L.; Chen, Y.; Zhu, E. B.; Lin, Z. Y.; Li, M. F.; Yan, A. M.; Zettl, A.; Wang, Y. M. et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science. 2015, 348, 1230–1234.CrossRefGoogle Scholar
  2. [2]
    Wu, G.; More, K. L.; Johnston, C. M.; Zelenay, P. Highperformance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 2011, 332, 443–447.CrossRefGoogle Scholar
  3. [3]
    Han, B. H.; Xu, C. X. Nanoporous PdFe alloy as highly active and durable electrocatalyst for oxygen reduction reaction. Int. J. Hydrogen Energ. 2014, 39, 18247–18255.CrossRefGoogle Scholar
  4. [4]
    He, D. P.; Zhang, L. B.; He, D. S.; Zhou, G.; Lin, Y.; Deng, Z. X.; Hong, X.; Wu, Y. E.; Chen, C.; Li, Y. D. Amorphous nickel boride membrane on a platinum–nickel alloy surface for enhanced oxygen reduction reaction. Nat. Commun. 2016, 7, 12362.CrossRefGoogle Scholar
  5. [5]
    Sasaki, K.; Naohara, H.; Choi, Y.; Cai, Y.; Chen, W. F.; Liu, P.; Adzic, R. R. Highly stable Pt monolayer on PdAu nanoparticle electrocatalysts for the oxygen reduction reaction. Nat. Commun. 2012, 3, 1115.CrossRefGoogle Scholar
  6. [6]
    Wang, C. M.; Ma, L.; Liao, L. W.; Bai, S.; Long, R.; Zuo, M.; Xiong, Y. J. A unique platinum-graphene hybrid structure for high activity and durability in oxygen reduction reaction. Sci. Rep. 2013, 3, 2580.CrossRefGoogle Scholar
  7. [7]
    Ma, L.; Wang, C. M.; Xia, B. Y.; Mao, K. K.; He, J. W.; Wu, X. J.; Xiong, Y. J.; Lou, X. W. Novel Pt multicubes prepared by Ni2+-mediated shape evolution exhibit high electrocatalytic activity for oxygen reduction. Angew. Chem., Int. Ed. 2015, 54, 5666–5671.CrossRefGoogle Scholar
  8. [8]
    Hernandez-Fernandez, P.; Masini, F.; McCarthy, D. N.; Strebel, C. E.; Friebel, D.; Deiana, D.; Malacrida, P.; Nierhoff, A.; Bodin, A.; Wise, A. M. et al. Mass-selected nanoparticles of PtxY as model catalysts for oxygen electroreduction. Nat. Chem. 2014, 6, 732–738.Google Scholar
  9. [9]
    Bai, S.; Wang, C. M.; Jiang, W. Y.; Du, N. N.; Li, J.; Du, J. T.; Long, R.; Li, Z. Q.; Xiong, Y. J. Etching approach to hybrid structures of PtPd nanocages and graphene for efficient oxygen reduction reaction catalysts. Nano. Res. 2015, 8, 2789–2799.CrossRefGoogle Scholar
  10. [10]
    El-Deeb, H.; Bron, M. Electrochemical dealloying of PtCu/ CNT electrocatalysts synthesized by NaBH4-assisted polyolreduction: Influence of preparation parameters on oxygen reduction activity. Electrochim. Acta 2015, 164, 315–322.CrossRefGoogle Scholar
  11. [11]
    Sun, X. L.; Li, D. G.; Ding, Y.; Zhu, W. L.; Guo, S. J.; Wang, Z. L.; Sun, S. H. Core/shell Au/CuPt nanoparticles and their dual electrocatalysis for both reduction and oxidation reactions. J. Am. Chem. Soc. 2014, 136, 5745–5749.CrossRefGoogle Scholar
  12. [12]
    Huang, Y.; Garcia, M.; Habib, S.; Shui, J. L.; Wagner, F. T.; Zhang, J. L.; Jorné, J.; Li, C. M. J. Dealloyed PtCo hollow nanowires with ultrathin wall thicknesses and their catalytic durability for the oxygen reduction reaction. J. Mater. Chem. A 2014, 2, 16175–16180.CrossRefGoogle Scholar
  13. [13]
    Jia, Q. Y.; Caldwell, K.; Ramaker, D. E.; Ziegelbauer, J. M.; Liu, Z. Y.; Yu, Z. Q.; Trahan, M.; Mukerjee, S. In situ spectroscopic evidence for ordered core–ultrathin shell Pt1Co1 nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. J. Phys. Chem. C. 2014, 118, 20496–20503.CrossRefGoogle Scholar
  14. [14]
    Zhu, Z. J.; Zhai, Y. L.; Dong, S. J. Facial synthesis of PtM (M = Fe, Co, Cu, Ni) bimetallic alloy nanosponges and their enhanced catalysis for oxygen reduction reaction. ACS Appl. Mater. Interfaces 2014, 6, 16721–16726.CrossRefGoogle Scholar
  15. [15]
    Gan, L.; Rudi, S.; Cui, C. H.; Heggen, M.; Strasser, P. Sizecontrolled synthesis of sub-10 nm PtNi3 alloy nanoparticles and their unusual volcano-shaped size effect on ORR electrocatalysis. Small 2016, 12, 3189–3196.CrossRefGoogle Scholar
  16. [16]
    Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343.CrossRefGoogle Scholar
  17. [17]
    Zhu, H. Y.; Zhang, S.; Guo, S. J.; Su, D.; Sun, S. H. Synthetic control of FePtM nanorods (M = Cu, Ni) to enhance the oxygen reduction reaction. J. Am. Chem. Soc. 2013, 135, 7130–7133.CrossRefGoogle Scholar
  18. [18]
    Guo, S. J.; Li, D. G.; Zhu, H. Y.; Zhang, S.; Markovic, N. M.; Stamenkovic, V. R.; Sun, S. H. FePt and CoPt nanowires as efficient catalysts for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2013, 52, 3465–3468.CrossRefGoogle Scholar
  19. [19]
    Wang, D. L.; Xin, H. L.; Hovden, R.; Wang, H. S.; Yu, Y. C.; Muller, D. A.; DiSalvo, F. J.; Abruña, H. D. Structurally ordered intermetallic platinum-cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 2013, 12, 81–87.CrossRefGoogle Scholar
  20. [20]
    Du, N. N.; Wang, C. M.; Wang, X. J.; Lin, Y.; Jiang, J.; Xiong, Y. J. Trimetallic tristar nanostructures: Tuning electronic and surface structures for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 2016, 28, 2077–2084.CrossRefGoogle Scholar
  21. [21]
    Strasser, P.; Koh, S.; Anniyev, T.; Greeley, J.; More, K.; Yu, C. F.; Liu, Z. C.; Kaya, S.; Nordlund, D.; Ogasawara, H. et al. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem. 2010, 2, 454–460.CrossRefGoogle Scholar
  22. [22]
    Oezaslan, M.; Hasché, F.; Strasser, P. Oxygen electroreduction on PtCo3, PtCo and Pt3Co alloy nanoparticles for alkaline and acidic PEM fuel cells. J. Electrochem. Soc. 2012, 159, B394–B405.CrossRefGoogle Scholar
  23. [23]
    Deng, D. H.; Yu, L.; Chen, X. Q.; Wang, G. X.; Jin, L.; Pan, X. L.; Deng, J.; Sun, G. Q.; Bao, X. H. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction. Angew. Chem., Int. Ed. 2013, 52, 371–375.CrossRefGoogle Scholar
  24. [24]
    Parnell, C. M.; Chhetri, B.; Brandt, A.; Watanabe, F.; Nima, Z. A.; Mudalige, T. K.; Biris, A. S.; Ghosh, A. Polydopamine-coated manganese complex/graphene nanocomposite for enhanced electrocatalytic activity towards oxygen reduction. Sci. Rep. 2016, 6, 31415.CrossRefGoogle Scholar
  25. [25]
    Chung, D. Y.; Jun, S. W.; Yoon, G.; Kwon, S. G.; Shin, D. Y.; Seo, P.; Yoo, J. M.; Shin, H.; Chung, Y.-H.; Kim, H. et al. Highly durable and active PtFe nanocatalyst for electrochemical oxygen reduction reaction. J. Am. Chem. Soc. 2015, 137, 15478–15485.CrossRefGoogle Scholar
  26. [26]
    Deng, J.; Ren, P. J.; Deng, D. H.; Bao, X. H. Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2015, 54, 2100–2104.CrossRefGoogle Scholar
  27. [27]
    Kuttiyiel, K. A.; Sasaki, K.; Choi, Y.; Su, D.; Liu, P.; Adzic, R. R. Nitride stabilized PtNi core–shell nanocatalyst for high oxygen reduction activity. Nano Lett. 2012, 12, 6266–6271.CrossRefGoogle Scholar
  28. [28]
    Ren, G. Y.; Lu, X. Y.; Li, Y.; Zhu, Y.; Dai, L. M.; Jiang, L. Porous core–shell Fe3C embedded N-doped carbon nanofibers as an effective electrocatalysts for oxygen reduction reaction. ACS Appl. Mater. Interfaces 2016, 8, 4118–4125.CrossRefGoogle Scholar
  29. [29]
    Lu, G.; Li, S. Z.; Guo, Z.; Farha, O. K.; Hauser, B. G.; Qi, X. Y.; Wang, Y.; Wang, X.; Han, S. Y.; Liu, X. G. et al. Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. Nat. Chem. 2012, 4, 310–316.CrossRefGoogle Scholar
  30. [30]
    Huang, G.; Yang, Q. H.; Xu, Q.; Yu, S. H.; Jiang, H. L. Polydimethylsiloxane coating for a palladium/MOF composite: Highly improved catalytic performance by surface hydrophobization. Angew. Chem., Int. Ed. 2016, 55, 7379–7383.CrossRefGoogle Scholar
  31. [31]
    Chen, Y. Z.; Wang, C. M.; Wu, Z. Y.; Xiong, Y. J.; Xu, Q.; Yu, S. H.; Jiang, H. L. From bimetallic metal-organic framework to porous carbon: High surface area and multicomponent active dopants for excellent electrocatalysis. Adv. Mater. 2015, 27, 5010–5016.CrossRefGoogle Scholar
  32. [32]
    Li, R.; Wu, S. K.; Wan, X. Y.; Xu, H. X.; Xiong, Y. J. Cu/TiO2 octahedral-shell photocatalysts derived from metalorganic framework@semiconductor hybrid structures. Inorg. Chem. Front. 2016, 3, 104–110.CrossRefGoogle Scholar
  33. [33]
    Torad, N. L.; Hu, M.; Ishihara, S.; Sukegawa, H.; Belik, A. A.; Imura, M.; Ariga, K.; Sakka, Y.; Yamauchi, Y. Direct synthesis of MOF-derived nanoporous carbon with magnetic Co nanoparticles toward efficient water treatment. Small 2014, 10, 2096–2107.CrossRefGoogle Scholar
  34. [34]
    Huang, Y. B.; Zhang, Y. H.; Chen, X. X.; Wu, D. S.; Yi, Z. G.; Cao, R. Bimetallic alloy nanocrystals encapsulated in ZIF-8 for synergistic catalysis of ethylene oxidative degradation. Chem. Commun. 2014, 50, 10115–10117.CrossRefGoogle Scholar
  35. [35]
    Zhang, M. M.; Yang, Y. B.; Li, C.; Liu, Q.; Willims, C. T.; Liang, C. H. PVP–Pd@ZIF-8 as highly efficient and stable catalysts for selective hydrogenation of 1,4-butynediol. Catal. Sci. Technol. 2014, 4, 329–332.CrossRefGoogle Scholar
  36. [36]
    Koh, S.; Strasser, P. Electrocatalysis on bimetallic surfaces: Modifying catalytic reactivity for oxygen reduction by voltammetric surface dealloying. J. Am. Chem. Soc. 2007, 129, 12624–12625.CrossRefGoogle Scholar
  37. [37]
    Srivastava, R.; Mani, P.; Hahn, N.; Strasser, P. Efficient oxygen reduction fuel cell electrocatalysis on voltammetrically dealloyed Pt-Cu-Co nanoparticles. Angew. Chem., Int. Ed. 2007, 46, 8988–8991.CrossRefGoogle Scholar
  38. [38]
    Eid, K.; Wang, H. J.; Malgras, V.; Alshehri, S. M.; Ahamad, T.; Yamauchi, Y.; Wang, L. One-step solution-phase synthesis of bimetallic PtCo nanodendrites with high electrocatalytic activity for oxygen reduction reaction. J. Electroanal. Chem. 2016, 779, 250–255.CrossRefGoogle Scholar
  39. [39]
    Guo, S. J.; Sun, S. H. FePt nanoparticles assembled on graphene as enhanced catalyst for oxygen reduction reaction. J. Am. Chem. Soc. 2012, 134, 2492–2495.CrossRefGoogle Scholar
  40. [40]
    Hsueh, K. L.; Gonzalez, E. R.; Srinivasan, S. Electrolyte effects on oxygen reduction kinetics at platinum: A rotating ring-disc electrode analysis. Electrochim. Acta 1983, 28, 691–697.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), School of Chemistry and Materials Science, and National Synchrotron Radiation LaboratoryUniversity of Science and Technology of ChinaHefeiChina
  2. 2.School of Chemistry and Materials EngineeringFuyang Normal CollegeFuyangChina

Personalised recommendations